--- base_model: llm-jp/llm-jp-3-13b license: apache-2.0 library_name: transformers --- # Uploaded model - **Developed by:** tscp - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b # Sample Use ```python from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) from peft import PeftModel import torch from tqdm import tqdm import json # Hugging Faceで取得したTokenをこちらに貼る。 HF_TOKEN = userdata.get('HF_TOKEN') model_id = "llm-jp/llm-jp-3-13b" adapter_id = "tscp/llm-jp-3-13b-finetune" # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) # Load model model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto", token = HF_TOKEN ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN) # 元のモデルにLoRAのアダプタを統合。 model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) # データセットの読み込み。 # (評価データセットのjsonlファイルのパスを設定してください) datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # gemma results = [] for data in tqdm(datasets): input = data["input"] prompt = f"""### 指示 {input} ### 回答 """ # input_ids だけを取り出して使用 input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) outputs = model.generate(input_ids, max_new_tokens=512, do_sample=False, repetition_penalty=1.2) output = tokenizer.decode(outputs[0][input_ids.size(1):], skip_special_tokens=True) results.append({"task_id": data["task_id"], "input": input, "output": output}) # jsonl import re jsonl_id = re.sub(".*/", "", adapter_id) with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters f.write('\n') ```