umarfarzan commited on
Commit
c9e7566
·
verified ·
1 Parent(s): 7ba476c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +20 -2
README.md CHANGED
@@ -1,3 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
  # Social Media Content Analyzer
3
 
@@ -20,7 +38,7 @@ model = AutoModelForCausalLM.from_pretrained(model_id)
20
  tokenizer = AutoTokenizer.from_pretrained(model_id)
21
 
22
  def generate_content_analysis(transcript, confidence_score):
23
- prompt = f"""Below is a transcript from a social media video along with its confidence score.
24
  Your task is to analyze the content and provide a detailed content critique analyzing the hook, reliability factor, relatability, and shareability.
25
 
26
  ### Transcript:
@@ -30,7 +48,7 @@ Your task is to analyze the content and provide a detailed content critique anal
30
  {confidence_score}
31
 
32
  ### Content Critique:"""
33
-
34
  inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
35
  outputs = model.generate(
36
  input_ids=inputs.input_ids,
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ tags:
5
+ - social-media
6
+ - content-analysis
7
+ - deepseek
8
+ - llama
9
+ - unsloth
10
+ datasets:
11
+ - custom
12
+ metrics:
13
+ - accuracy
14
+ library_name: transformers
15
+ pipeline_tag: text-generation
16
+ widget:
17
+ - text: "Let me show you how to track your expenses with this simple spreadsheet template. First, create columns for date, category, and amount. Then, use the SUM function to automatically calculate your total spending..."
18
+ ---
19
 
20
  # Social Media Content Analyzer
21
 
 
38
  tokenizer = AutoTokenizer.from_pretrained(model_id)
39
 
40
  def generate_content_analysis(transcript, confidence_score):
41
+ prompt = f"""Below is a transcript from a social media video along with its confidence score.
42
  Your task is to analyze the content and provide a detailed content critique analyzing the hook, reliability factor, relatability, and shareability.
43
 
44
  ### Transcript:
 
48
  {confidence_score}
49
 
50
  ### Content Critique:"""
51
+
52
  inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
53
  outputs = model.generate(
54
  input_ids=inputs.input_ids,