Add config from convert_d_fine_original_pytorch_checkpoint_to_hf.py
Browse files- README.md +199 -0
- config.json +919 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,919 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "silu",
|
5 |
+
"anchor_image_size": null,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auxiliary_loss": true,
|
8 |
+
"backbone": null,
|
9 |
+
"backbone_config": {
|
10 |
+
"depths": [
|
11 |
+
3,
|
12 |
+
4,
|
13 |
+
6,
|
14 |
+
3
|
15 |
+
],
|
16 |
+
"downsample_in_bottleneck": false,
|
17 |
+
"downsample_in_first_stage": false,
|
18 |
+
"embedding_size": 32,
|
19 |
+
"hidden_act": "relu",
|
20 |
+
"hidden_sizes": [
|
21 |
+
192,
|
22 |
+
384,
|
23 |
+
768,
|
24 |
+
1536
|
25 |
+
],
|
26 |
+
"initializer_range": 0.02,
|
27 |
+
"layer_type": "basic",
|
28 |
+
"model_type": "hgnet_v2",
|
29 |
+
"num_channels": 3,
|
30 |
+
"out_features": [
|
31 |
+
"stage2",
|
32 |
+
"stage3",
|
33 |
+
"stage4"
|
34 |
+
],
|
35 |
+
"out_indices": [
|
36 |
+
2,
|
37 |
+
3,
|
38 |
+
4
|
39 |
+
],
|
40 |
+
"stage_downsample": [
|
41 |
+
false,
|
42 |
+
true,
|
43 |
+
true,
|
44 |
+
true
|
45 |
+
],
|
46 |
+
"stage_in_channels": [
|
47 |
+
32,
|
48 |
+
96,
|
49 |
+
384,
|
50 |
+
768
|
51 |
+
],
|
52 |
+
"stage_kernel_size": [
|
53 |
+
3,
|
54 |
+
3,
|
55 |
+
5,
|
56 |
+
5
|
57 |
+
],
|
58 |
+
"stage_light_block": [
|
59 |
+
false,
|
60 |
+
false,
|
61 |
+
true,
|
62 |
+
true
|
63 |
+
],
|
64 |
+
"stage_mid_channels": [
|
65 |
+
32,
|
66 |
+
64,
|
67 |
+
128,
|
68 |
+
256
|
69 |
+
],
|
70 |
+
"stage_names": [
|
71 |
+
"stem",
|
72 |
+
"stage1",
|
73 |
+
"stage2",
|
74 |
+
"stage3",
|
75 |
+
"stage4"
|
76 |
+
],
|
77 |
+
"stage_num_blocks": [
|
78 |
+
1,
|
79 |
+
1,
|
80 |
+
3,
|
81 |
+
1
|
82 |
+
],
|
83 |
+
"stage_numb_of_layers": [
|
84 |
+
4,
|
85 |
+
4,
|
86 |
+
4,
|
87 |
+
4
|
88 |
+
],
|
89 |
+
"stage_out_channels": [
|
90 |
+
96,
|
91 |
+
384,
|
92 |
+
768,
|
93 |
+
1536
|
94 |
+
],
|
95 |
+
"stem_channels": [
|
96 |
+
3,
|
97 |
+
24,
|
98 |
+
32
|
99 |
+
],
|
100 |
+
"use_learnable_affine_block": true
|
101 |
+
},
|
102 |
+
"backbone_kwargs": null,
|
103 |
+
"batch_norm_eps": 1e-05,
|
104 |
+
"box_noise_scale": 1.0,
|
105 |
+
"d_model": 256,
|
106 |
+
"decoder_activation_function": "relu",
|
107 |
+
"decoder_attention_heads": 8,
|
108 |
+
"decoder_ffn_dim": 1024,
|
109 |
+
"decoder_in_channels": [
|
110 |
+
256,
|
111 |
+
256,
|
112 |
+
256
|
113 |
+
],
|
114 |
+
"decoder_layers": 4,
|
115 |
+
"decoder_method": "default",
|
116 |
+
"decoder_n_points": [
|
117 |
+
3,
|
118 |
+
6,
|
119 |
+
3
|
120 |
+
],
|
121 |
+
"decoder_offset_scale": 0.5,
|
122 |
+
"depth_mult": 0.67,
|
123 |
+
"dropout": 0.0,
|
124 |
+
"encode_proj_layers": [
|
125 |
+
2
|
126 |
+
],
|
127 |
+
"encoder_activation_function": "gelu",
|
128 |
+
"encoder_attention_heads": 8,
|
129 |
+
"encoder_ffn_dim": 1024,
|
130 |
+
"encoder_hidden_dim": 256,
|
131 |
+
"encoder_in_channels": [
|
132 |
+
384,
|
133 |
+
768,
|
134 |
+
1536
|
135 |
+
],
|
136 |
+
"encoder_layers": 1,
|
137 |
+
"eos_coefficient": 0.0001,
|
138 |
+
"eval_idx": -1,
|
139 |
+
"eval_size": null,
|
140 |
+
"feat_strides": [
|
141 |
+
8,
|
142 |
+
16,
|
143 |
+
32
|
144 |
+
],
|
145 |
+
"focal_loss_alpha": 0.75,
|
146 |
+
"focal_loss_gamma": 2.0,
|
147 |
+
"freeze_backbone_batch_norms": true,
|
148 |
+
"hidden_expansion": 1.0,
|
149 |
+
"id2label": {
|
150 |
+
"0": "None",
|
151 |
+
"1": "Person",
|
152 |
+
"2": "Sneakers",
|
153 |
+
"3": "Chair",
|
154 |
+
"4": "Other Shoes",
|
155 |
+
"5": "Hat",
|
156 |
+
"6": "Car",
|
157 |
+
"7": "Lamp",
|
158 |
+
"8": "Glasses",
|
159 |
+
"9": "Bottle",
|
160 |
+
"10": "Desk",
|
161 |
+
"11": "Cup",
|
162 |
+
"12": "Street Lights",
|
163 |
+
"13": "Cabinet/shelf",
|
164 |
+
"14": "Handbag/Satchel",
|
165 |
+
"15": "Bracelet",
|
166 |
+
"16": "Plate",
|
167 |
+
"17": "Picture/Frame",
|
168 |
+
"18": "Helmet",
|
169 |
+
"19": "Book",
|
170 |
+
"20": "Gloves",
|
171 |
+
"21": "Storage box",
|
172 |
+
"22": "Boat",
|
173 |
+
"23": "Leather Shoes",
|
174 |
+
"24": "Flower",
|
175 |
+
"25": "Bench",
|
176 |
+
"26": "Potted Plant",
|
177 |
+
"27": "Bowl/Basin",
|
178 |
+
"28": "Flag",
|
179 |
+
"29": "Pillow",
|
180 |
+
"30": "Boots",
|
181 |
+
"31": "Vase",
|
182 |
+
"32": "Microphone",
|
183 |
+
"33": "Necklace",
|
184 |
+
"34": "Ring",
|
185 |
+
"35": "SUV",
|
186 |
+
"36": "Wine Glass",
|
187 |
+
"37": "Belt",
|
188 |
+
"38": "Monitor/TV",
|
189 |
+
"39": "Backpack",
|
190 |
+
"40": "Umbrella",
|
191 |
+
"41": "Traffic Light",
|
192 |
+
"42": "Speaker",
|
193 |
+
"43": "Watch",
|
194 |
+
"44": "Tie",
|
195 |
+
"45": "Trash bin Can",
|
196 |
+
"46": "Slippers",
|
197 |
+
"47": "Bicycle",
|
198 |
+
"48": "Stool",
|
199 |
+
"49": "Barrel/bucket",
|
200 |
+
"50": "Van",
|
201 |
+
"51": "Couch",
|
202 |
+
"52": "Sandals",
|
203 |
+
"53": "Basket",
|
204 |
+
"54": "Drum",
|
205 |
+
"55": "Pen/Pencil",
|
206 |
+
"56": "Bus",
|
207 |
+
"57": "Wild Bird",
|
208 |
+
"58": "High Heels",
|
209 |
+
"59": "Motorcycle",
|
210 |
+
"60": "Guitar",
|
211 |
+
"61": "Carpet",
|
212 |
+
"62": "Cell Phone",
|
213 |
+
"63": "Bread",
|
214 |
+
"64": "Camera",
|
215 |
+
"65": "Canned",
|
216 |
+
"66": "Truck",
|
217 |
+
"67": "Traffic cone",
|
218 |
+
"68": "Cymbal",
|
219 |
+
"69": "Lifesaver",
|
220 |
+
"70": "Towel",
|
221 |
+
"71": "Stuffed Toy",
|
222 |
+
"72": "Candle",
|
223 |
+
"73": "Sailboat",
|
224 |
+
"74": "Laptop",
|
225 |
+
"75": "Awning",
|
226 |
+
"76": "Bed",
|
227 |
+
"77": "Faucet",
|
228 |
+
"78": "Tent",
|
229 |
+
"79": "Horse",
|
230 |
+
"80": "Mirror",
|
231 |
+
"81": "Power outlet",
|
232 |
+
"82": "Sink",
|
233 |
+
"83": "Apple",
|
234 |
+
"84": "Air Conditioner",
|
235 |
+
"85": "Knife",
|
236 |
+
"86": "Hockey Stick",
|
237 |
+
"87": "Paddle",
|
238 |
+
"88": "Pickup Truck",
|
239 |
+
"89": "Fork",
|
240 |
+
"90": "Traffic Sign",
|
241 |
+
"91": "Balloon",
|
242 |
+
"92": "Tripod",
|
243 |
+
"93": "Dog",
|
244 |
+
"94": "Spoon",
|
245 |
+
"95": "Clock",
|
246 |
+
"96": "Pot",
|
247 |
+
"97": "Cow",
|
248 |
+
"98": "Cake",
|
249 |
+
"99": "Dinning Table",
|
250 |
+
"100": "Sheep",
|
251 |
+
"101": "Hanger",
|
252 |
+
"102": "Blackboard/Whiteboard",
|
253 |
+
"103": "Napkin",
|
254 |
+
"104": "Other Fish",
|
255 |
+
"105": "Orange/Tangerine",
|
256 |
+
"106": "Toiletry",
|
257 |
+
"107": "Keyboard",
|
258 |
+
"108": "Tomato",
|
259 |
+
"109": "Lantern",
|
260 |
+
"110": "Machinery Vehicle",
|
261 |
+
"111": "Fan",
|
262 |
+
"112": "Green Vegetables",
|
263 |
+
"113": "Banana",
|
264 |
+
"114": "Baseball Glove",
|
265 |
+
"115": "Airplane",
|
266 |
+
"116": "Mouse",
|
267 |
+
"117": "Train",
|
268 |
+
"118": "Pumpkin",
|
269 |
+
"119": "Soccer",
|
270 |
+
"120": "Skiboard",
|
271 |
+
"121": "Luggage",
|
272 |
+
"122": "Nightstand",
|
273 |
+
"123": "Tea pot",
|
274 |
+
"124": "Telephone",
|
275 |
+
"125": "Trolley",
|
276 |
+
"126": "Head Phone",
|
277 |
+
"127": "Sports Car",
|
278 |
+
"128": "Stop Sign",
|
279 |
+
"129": "Dessert",
|
280 |
+
"130": "Scooter",
|
281 |
+
"131": "Stroller",
|
282 |
+
"132": "Crane",
|
283 |
+
"133": "Remote",
|
284 |
+
"134": "Refrigerator",
|
285 |
+
"135": "Oven",
|
286 |
+
"136": "Lemon",
|
287 |
+
"137": "Duck",
|
288 |
+
"138": "Baseball Bat",
|
289 |
+
"139": "Surveillance Camera",
|
290 |
+
"140": "Cat",
|
291 |
+
"141": "Jug",
|
292 |
+
"142": "Broccoli",
|
293 |
+
"143": "Piano",
|
294 |
+
"144": "Pizza",
|
295 |
+
"145": "Elephant",
|
296 |
+
"146": "Skateboard",
|
297 |
+
"147": "Surfboard",
|
298 |
+
"148": "Gun",
|
299 |
+
"149": "Skating and Skiing shoes",
|
300 |
+
"150": "Gas stove",
|
301 |
+
"151": "Donut",
|
302 |
+
"152": "Bow Tie",
|
303 |
+
"153": "Carrot",
|
304 |
+
"154": "Toilet",
|
305 |
+
"155": "Kite",
|
306 |
+
"156": "Strawberry",
|
307 |
+
"157": "Other Balls",
|
308 |
+
"158": "Shovel",
|
309 |
+
"159": "Pepper",
|
310 |
+
"160": "Computer Box",
|
311 |
+
"161": "Toilet Paper",
|
312 |
+
"162": "Cleaning Products",
|
313 |
+
"163": "Chopsticks",
|
314 |
+
"164": "Microwave",
|
315 |
+
"165": "Pigeon",
|
316 |
+
"166": "Baseball",
|
317 |
+
"167": "Cutting/chopping Board",
|
318 |
+
"168": "Coffee Table",
|
319 |
+
"169": "Side Table",
|
320 |
+
"170": "Scissors",
|
321 |
+
"171": "Marker",
|
322 |
+
"172": "Pie",
|
323 |
+
"173": "Ladder",
|
324 |
+
"174": "Snowboard",
|
325 |
+
"175": "Cookies",
|
326 |
+
"176": "Radiator",
|
327 |
+
"177": "Fire Hydrant",
|
328 |
+
"178": "Basketball",
|
329 |
+
"179": "Zebra",
|
330 |
+
"180": "Grape",
|
331 |
+
"181": "Giraffe",
|
332 |
+
"182": "Potato",
|
333 |
+
"183": "Sausage",
|
334 |
+
"184": "Tricycle",
|
335 |
+
"185": "Violin",
|
336 |
+
"186": "Egg",
|
337 |
+
"187": "Fire Extinguisher",
|
338 |
+
"188": "Candy",
|
339 |
+
"189": "Fire Truck",
|
340 |
+
"190": "Billiards",
|
341 |
+
"191": "Converter",
|
342 |
+
"192": "Bathtub",
|
343 |
+
"193": "Wheelchair",
|
344 |
+
"194": "Golf Club",
|
345 |
+
"195": "Briefcase",
|
346 |
+
"196": "Cucumber",
|
347 |
+
"197": "Cigar/Cigarette",
|
348 |
+
"198": "Paint Brush",
|
349 |
+
"199": "Pear",
|
350 |
+
"200": "Heavy Truck",
|
351 |
+
"201": "Hamburger",
|
352 |
+
"202": "Extractor",
|
353 |
+
"203": "Extension Cord",
|
354 |
+
"204": "Tong",
|
355 |
+
"205": "Tennis Racket",
|
356 |
+
"206": "Folder",
|
357 |
+
"207": "American Football",
|
358 |
+
"208": "earphone",
|
359 |
+
"209": "Mask",
|
360 |
+
"210": "Kettle",
|
361 |
+
"211": "Tennis",
|
362 |
+
"212": "Ship",
|
363 |
+
"213": "Swing",
|
364 |
+
"214": "Coffee Machine",
|
365 |
+
"215": "Slide",
|
366 |
+
"216": "Carriage",
|
367 |
+
"217": "Onion",
|
368 |
+
"218": "Green beans",
|
369 |
+
"219": "Projector",
|
370 |
+
"220": "Frisbee",
|
371 |
+
"221": "Washing Machine/Drying Machine",
|
372 |
+
"222": "Chicken",
|
373 |
+
"223": "Printer",
|
374 |
+
"224": "Watermelon",
|
375 |
+
"225": "Saxophone",
|
376 |
+
"226": "Tissue",
|
377 |
+
"227": "Toothbrush",
|
378 |
+
"228": "Ice cream",
|
379 |
+
"229": "Hot-air balloon",
|
380 |
+
"230": "Cello",
|
381 |
+
"231": "French Fries",
|
382 |
+
"232": "Scale",
|
383 |
+
"233": "Trophy",
|
384 |
+
"234": "Cabbage",
|
385 |
+
"235": "Hot dog",
|
386 |
+
"236": "Blender",
|
387 |
+
"237": "Peach",
|
388 |
+
"238": "Rice",
|
389 |
+
"239": "Wallet/Purse",
|
390 |
+
"240": "Volleyball",
|
391 |
+
"241": "Deer",
|
392 |
+
"242": "Goose",
|
393 |
+
"243": "Tape",
|
394 |
+
"244": "Tablet",
|
395 |
+
"245": "Cosmetics",
|
396 |
+
"246": "Trumpet",
|
397 |
+
"247": "Pineapple",
|
398 |
+
"248": "Golf Ball",
|
399 |
+
"249": "Ambulance",
|
400 |
+
"250": "Parking meter",
|
401 |
+
"251": "Mango",
|
402 |
+
"252": "Key",
|
403 |
+
"253": "Hurdle",
|
404 |
+
"254": "Fishing Rod",
|
405 |
+
"255": "Medal",
|
406 |
+
"256": "Flute",
|
407 |
+
"257": "Brush",
|
408 |
+
"258": "Penguin",
|
409 |
+
"259": "Megaphone",
|
410 |
+
"260": "Corn",
|
411 |
+
"261": "Lettuce",
|
412 |
+
"262": "Garlic",
|
413 |
+
"263": "Swan",
|
414 |
+
"264": "Helicopter",
|
415 |
+
"265": "Green Onion",
|
416 |
+
"266": "Sandwich",
|
417 |
+
"267": "Nuts",
|
418 |
+
"268": "Speed Limit Sign",
|
419 |
+
"269": "Induction Cooker",
|
420 |
+
"270": "Broom",
|
421 |
+
"271": "Trombone",
|
422 |
+
"272": "Plum",
|
423 |
+
"273": "Rickshaw",
|
424 |
+
"274": "Goldfish",
|
425 |
+
"275": "Kiwi fruit",
|
426 |
+
"276": "Router/modem",
|
427 |
+
"277": "Poker Card",
|
428 |
+
"278": "Toaster",
|
429 |
+
"279": "Shrimp",
|
430 |
+
"280": "Sushi",
|
431 |
+
"281": "Cheese",
|
432 |
+
"282": "Notepaper",
|
433 |
+
"283": "Cherry",
|
434 |
+
"284": "Pliers",
|
435 |
+
"285": "CD",
|
436 |
+
"286": "Pasta",
|
437 |
+
"287": "Hammer",
|
438 |
+
"288": "Cue",
|
439 |
+
"289": "Avocado",
|
440 |
+
"290": "Hamimelon",
|
441 |
+
"291": "Flask",
|
442 |
+
"292": "Mushroom",
|
443 |
+
"293": "Screwdriver",
|
444 |
+
"294": "Soap",
|
445 |
+
"295": "Recorder",
|
446 |
+
"296": "Bear",
|
447 |
+
"297": "Eggplant",
|
448 |
+
"298": "Board Eraser",
|
449 |
+
"299": "Coconut",
|
450 |
+
"300": "Tape Measure/Ruler",
|
451 |
+
"301": "Pig",
|
452 |
+
"302": "Showerhead",
|
453 |
+
"303": "Globe",
|
454 |
+
"304": "Chips",
|
455 |
+
"305": "Steak",
|
456 |
+
"306": "Crosswalk Sign",
|
457 |
+
"307": "Stapler",
|
458 |
+
"308": "Camel",
|
459 |
+
"309": "Formula 1",
|
460 |
+
"310": "Pomegranate",
|
461 |
+
"311": "Dishwasher",
|
462 |
+
"312": "Crab",
|
463 |
+
"313": "Hoverboard",
|
464 |
+
"314": "Meat ball",
|
465 |
+
"315": "Rice Cooker",
|
466 |
+
"316": "Tuba",
|
467 |
+
"317": "Calculator",
|
468 |
+
"318": "Papaya",
|
469 |
+
"319": "Antelope",
|
470 |
+
"320": "Parrot",
|
471 |
+
"321": "Seal",
|
472 |
+
"322": "Butterfly",
|
473 |
+
"323": "Dumbbell",
|
474 |
+
"324": "Donkey",
|
475 |
+
"325": "Lion",
|
476 |
+
"326": "Urinal",
|
477 |
+
"327": "Dolphin",
|
478 |
+
"328": "Electric Drill",
|
479 |
+
"329": "Hair Dryer",
|
480 |
+
"330": "Egg tart",
|
481 |
+
"331": "Jellyfish",
|
482 |
+
"332": "Treadmill",
|
483 |
+
"333": "Lighter",
|
484 |
+
"334": "Grapefruit",
|
485 |
+
"335": "Game board",
|
486 |
+
"336": "Mop",
|
487 |
+
"337": "Radish",
|
488 |
+
"338": "Baozi",
|
489 |
+
"339": "Target",
|
490 |
+
"340": "French",
|
491 |
+
"341": "Spring Rolls",
|
492 |
+
"342": "Monkey",
|
493 |
+
"343": "Rabbit",
|
494 |
+
"344": "Pencil Case",
|
495 |
+
"345": "Yak",
|
496 |
+
"346": "Red Cabbage",
|
497 |
+
"347": "Binoculars",
|
498 |
+
"348": "Asparagus",
|
499 |
+
"349": "Barbell",
|
500 |
+
"350": "Scallop",
|
501 |
+
"351": "Noddles",
|
502 |
+
"352": "Comb",
|
503 |
+
"353": "Dumpling",
|
504 |
+
"354": "Oyster",
|
505 |
+
"355": "Table Tennis paddle",
|
506 |
+
"356": "Cosmetics Brush/Eyeliner Pencil",
|
507 |
+
"357": "Chainsaw",
|
508 |
+
"358": "Eraser",
|
509 |
+
"359": "Lobster",
|
510 |
+
"360": "Durian",
|
511 |
+
"361": "Okra",
|
512 |
+
"362": "Lipstick",
|
513 |
+
"363": "Cosmetics Mirror",
|
514 |
+
"364": "Curling",
|
515 |
+
"365": "Table Tennis"
|
516 |
+
},
|
517 |
+
"initializer_bias_prior_prob": null,
|
518 |
+
"initializer_range": 0.01,
|
519 |
+
"is_encoder_decoder": true,
|
520 |
+
"label2id": {
|
521 |
+
"Air Conditioner": 84,
|
522 |
+
"Airplane": 115,
|
523 |
+
"Ambulance": 249,
|
524 |
+
"American Football": 207,
|
525 |
+
"Antelope": 319,
|
526 |
+
"Apple": 83,
|
527 |
+
"Asparagus": 348,
|
528 |
+
"Avocado": 289,
|
529 |
+
"Awning": 75,
|
530 |
+
"Backpack": 39,
|
531 |
+
"Balloon": 91,
|
532 |
+
"Banana": 113,
|
533 |
+
"Baozi": 338,
|
534 |
+
"Barbell": 349,
|
535 |
+
"Barrel/bucket": 49,
|
536 |
+
"Baseball": 166,
|
537 |
+
"Baseball Bat": 138,
|
538 |
+
"Baseball Glove": 114,
|
539 |
+
"Basket": 53,
|
540 |
+
"Basketball": 178,
|
541 |
+
"Bathtub": 192,
|
542 |
+
"Bear": 296,
|
543 |
+
"Bed": 76,
|
544 |
+
"Belt": 37,
|
545 |
+
"Bench": 25,
|
546 |
+
"Bicycle": 47,
|
547 |
+
"Billiards": 190,
|
548 |
+
"Binoculars": 347,
|
549 |
+
"Blackboard/Whiteboard": 102,
|
550 |
+
"Blender": 236,
|
551 |
+
"Board Eraser": 298,
|
552 |
+
"Boat": 22,
|
553 |
+
"Book": 19,
|
554 |
+
"Boots": 30,
|
555 |
+
"Bottle": 9,
|
556 |
+
"Bow Tie": 152,
|
557 |
+
"Bowl/Basin": 27,
|
558 |
+
"Bracelet": 15,
|
559 |
+
"Bread": 63,
|
560 |
+
"Briefcase": 195,
|
561 |
+
"Broccoli": 142,
|
562 |
+
"Broom": 270,
|
563 |
+
"Brush": 257,
|
564 |
+
"Bus": 56,
|
565 |
+
"Butterfly": 322,
|
566 |
+
"CD": 285,
|
567 |
+
"Cabbage": 234,
|
568 |
+
"Cabinet/shelf": 13,
|
569 |
+
"Cake": 98,
|
570 |
+
"Calculator": 317,
|
571 |
+
"Camel": 308,
|
572 |
+
"Camera": 64,
|
573 |
+
"Candle": 72,
|
574 |
+
"Candy": 188,
|
575 |
+
"Canned": 65,
|
576 |
+
"Car": 6,
|
577 |
+
"Carpet": 61,
|
578 |
+
"Carriage": 216,
|
579 |
+
"Carrot": 153,
|
580 |
+
"Cat": 140,
|
581 |
+
"Cell Phone": 62,
|
582 |
+
"Cello": 230,
|
583 |
+
"Chainsaw": 357,
|
584 |
+
"Chair": 3,
|
585 |
+
"Cheese": 281,
|
586 |
+
"Cherry": 283,
|
587 |
+
"Chicken": 222,
|
588 |
+
"Chips": 304,
|
589 |
+
"Chopsticks": 163,
|
590 |
+
"Cigar/Cigarette": 197,
|
591 |
+
"Cleaning Products": 162,
|
592 |
+
"Clock": 95,
|
593 |
+
"Coconut": 299,
|
594 |
+
"Coffee Machine": 214,
|
595 |
+
"Coffee Table": 168,
|
596 |
+
"Comb": 352,
|
597 |
+
"Computer Box": 160,
|
598 |
+
"Converter": 191,
|
599 |
+
"Cookies": 175,
|
600 |
+
"Corn": 260,
|
601 |
+
"Cosmetics": 245,
|
602 |
+
"Cosmetics Brush/Eyeliner Pencil": 356,
|
603 |
+
"Cosmetics Mirror": 363,
|
604 |
+
"Couch": 51,
|
605 |
+
"Cow": 97,
|
606 |
+
"Crab": 312,
|
607 |
+
"Crane": 132,
|
608 |
+
"Crosswalk Sign": 306,
|
609 |
+
"Cucumber": 196,
|
610 |
+
"Cue": 288,
|
611 |
+
"Cup": 11,
|
612 |
+
"Curling": 364,
|
613 |
+
"Cutting/chopping Board": 167,
|
614 |
+
"Cymbal": 68,
|
615 |
+
"Deer": 241,
|
616 |
+
"Desk": 10,
|
617 |
+
"Dessert": 129,
|
618 |
+
"Dinning Table": 99,
|
619 |
+
"Dishwasher": 311,
|
620 |
+
"Dog": 93,
|
621 |
+
"Dolphin": 327,
|
622 |
+
"Donkey": 324,
|
623 |
+
"Donut": 151,
|
624 |
+
"Drum": 54,
|
625 |
+
"Duck": 137,
|
626 |
+
"Dumbbell": 323,
|
627 |
+
"Dumpling": 353,
|
628 |
+
"Durian": 360,
|
629 |
+
"Egg": 186,
|
630 |
+
"Egg tart": 330,
|
631 |
+
"Eggplant": 297,
|
632 |
+
"Electric Drill": 328,
|
633 |
+
"Elephant": 145,
|
634 |
+
"Eraser": 358,
|
635 |
+
"Extension Cord": 203,
|
636 |
+
"Extractor": 202,
|
637 |
+
"Fan": 111,
|
638 |
+
"Faucet": 77,
|
639 |
+
"Fire Extinguisher": 187,
|
640 |
+
"Fire Hydrant": 177,
|
641 |
+
"Fire Truck": 189,
|
642 |
+
"Fishing Rod": 254,
|
643 |
+
"Flag": 28,
|
644 |
+
"Flask": 291,
|
645 |
+
"Flower": 24,
|
646 |
+
"Flute": 256,
|
647 |
+
"Folder": 206,
|
648 |
+
"Fork": 89,
|
649 |
+
"Formula 1": 309,
|
650 |
+
"French": 340,
|
651 |
+
"French Fries": 231,
|
652 |
+
"Frisbee": 220,
|
653 |
+
"Game board": 335,
|
654 |
+
"Garlic": 262,
|
655 |
+
"Gas stove": 150,
|
656 |
+
"Giraffe": 181,
|
657 |
+
"Glasses": 8,
|
658 |
+
"Globe": 303,
|
659 |
+
"Gloves": 20,
|
660 |
+
"Goldfish": 274,
|
661 |
+
"Golf Ball": 248,
|
662 |
+
"Golf Club": 194,
|
663 |
+
"Goose": 242,
|
664 |
+
"Grape": 180,
|
665 |
+
"Grapefruit": 334,
|
666 |
+
"Green Onion": 265,
|
667 |
+
"Green Vegetables": 112,
|
668 |
+
"Green beans": 218,
|
669 |
+
"Guitar": 60,
|
670 |
+
"Gun": 148,
|
671 |
+
"Hair Dryer": 329,
|
672 |
+
"Hamburger": 201,
|
673 |
+
"Hamimelon": 290,
|
674 |
+
"Hammer": 287,
|
675 |
+
"Handbag/Satchel": 14,
|
676 |
+
"Hanger": 101,
|
677 |
+
"Hat": 5,
|
678 |
+
"Head Phone": 126,
|
679 |
+
"Heavy Truck": 200,
|
680 |
+
"Helicopter": 264,
|
681 |
+
"Helmet": 18,
|
682 |
+
"High Heels": 58,
|
683 |
+
"Hockey Stick": 86,
|
684 |
+
"Horse": 79,
|
685 |
+
"Hot dog": 235,
|
686 |
+
"Hot-air balloon": 229,
|
687 |
+
"Hoverboard": 313,
|
688 |
+
"Hurdle": 253,
|
689 |
+
"Ice cream": 228,
|
690 |
+
"Induction Cooker": 269,
|
691 |
+
"Jellyfish": 331,
|
692 |
+
"Jug": 141,
|
693 |
+
"Kettle": 210,
|
694 |
+
"Key": 252,
|
695 |
+
"Keyboard": 107,
|
696 |
+
"Kite": 155,
|
697 |
+
"Kiwi fruit": 275,
|
698 |
+
"Knife": 85,
|
699 |
+
"Ladder": 173,
|
700 |
+
"Lamp": 7,
|
701 |
+
"Lantern": 109,
|
702 |
+
"Laptop": 74,
|
703 |
+
"Leather Shoes": 23,
|
704 |
+
"Lemon": 136,
|
705 |
+
"Lettuce": 261,
|
706 |
+
"Lifesaver": 69,
|
707 |
+
"Lighter": 333,
|
708 |
+
"Lion": 325,
|
709 |
+
"Lipstick": 362,
|
710 |
+
"Lobster": 359,
|
711 |
+
"Luggage": 121,
|
712 |
+
"Machinery Vehicle": 110,
|
713 |
+
"Mango": 251,
|
714 |
+
"Marker": 171,
|
715 |
+
"Mask": 209,
|
716 |
+
"Meat ball": 314,
|
717 |
+
"Medal": 255,
|
718 |
+
"Megaphone": 259,
|
719 |
+
"Microphone": 32,
|
720 |
+
"Microwave": 164,
|
721 |
+
"Mirror": 80,
|
722 |
+
"Monitor/TV": 38,
|
723 |
+
"Monkey": 342,
|
724 |
+
"Mop": 336,
|
725 |
+
"Motorcycle": 59,
|
726 |
+
"Mouse": 116,
|
727 |
+
"Mushroom": 292,
|
728 |
+
"Napkin": 103,
|
729 |
+
"Necklace": 33,
|
730 |
+
"Nightstand": 122,
|
731 |
+
"Noddles": 351,
|
732 |
+
"None": 0,
|
733 |
+
"Notepaper": 282,
|
734 |
+
"Nuts": 267,
|
735 |
+
"Okra": 361,
|
736 |
+
"Onion": 217,
|
737 |
+
"Orange/Tangerine": 105,
|
738 |
+
"Other Balls": 157,
|
739 |
+
"Other Fish": 104,
|
740 |
+
"Other Shoes": 4,
|
741 |
+
"Oven": 135,
|
742 |
+
"Oyster": 354,
|
743 |
+
"Paddle": 87,
|
744 |
+
"Paint Brush": 198,
|
745 |
+
"Papaya": 318,
|
746 |
+
"Parking meter": 250,
|
747 |
+
"Parrot": 320,
|
748 |
+
"Pasta": 286,
|
749 |
+
"Peach": 237,
|
750 |
+
"Pear": 199,
|
751 |
+
"Pen/Pencil": 55,
|
752 |
+
"Pencil Case": 344,
|
753 |
+
"Penguin": 258,
|
754 |
+
"Pepper": 159,
|
755 |
+
"Person": 1,
|
756 |
+
"Piano": 143,
|
757 |
+
"Pickup Truck": 88,
|
758 |
+
"Picture/Frame": 17,
|
759 |
+
"Pie": 172,
|
760 |
+
"Pig": 301,
|
761 |
+
"Pigeon": 165,
|
762 |
+
"Pillow": 29,
|
763 |
+
"Pineapple": 247,
|
764 |
+
"Pizza": 144,
|
765 |
+
"Plate": 16,
|
766 |
+
"Pliers": 284,
|
767 |
+
"Plum": 272,
|
768 |
+
"Poker Card": 277,
|
769 |
+
"Pomegranate": 310,
|
770 |
+
"Pot": 96,
|
771 |
+
"Potato": 182,
|
772 |
+
"Potted Plant": 26,
|
773 |
+
"Power outlet": 81,
|
774 |
+
"Printer": 223,
|
775 |
+
"Projector": 219,
|
776 |
+
"Pumpkin": 118,
|
777 |
+
"Rabbit": 343,
|
778 |
+
"Radiator": 176,
|
779 |
+
"Radish": 337,
|
780 |
+
"Recorder": 295,
|
781 |
+
"Red Cabbage": 346,
|
782 |
+
"Refrigerator": 134,
|
783 |
+
"Remote": 133,
|
784 |
+
"Rice": 238,
|
785 |
+
"Rice Cooker": 315,
|
786 |
+
"Rickshaw": 273,
|
787 |
+
"Ring": 34,
|
788 |
+
"Router/modem": 276,
|
789 |
+
"SUV": 35,
|
790 |
+
"Sailboat": 73,
|
791 |
+
"Sandals": 52,
|
792 |
+
"Sandwich": 266,
|
793 |
+
"Sausage": 183,
|
794 |
+
"Saxophone": 225,
|
795 |
+
"Scale": 232,
|
796 |
+
"Scallop": 350,
|
797 |
+
"Scissors": 170,
|
798 |
+
"Scooter": 130,
|
799 |
+
"Screwdriver": 293,
|
800 |
+
"Seal": 321,
|
801 |
+
"Sheep": 100,
|
802 |
+
"Ship": 212,
|
803 |
+
"Shovel": 158,
|
804 |
+
"Showerhead": 302,
|
805 |
+
"Shrimp": 279,
|
806 |
+
"Side Table": 169,
|
807 |
+
"Sink": 82,
|
808 |
+
"Skateboard": 146,
|
809 |
+
"Skating and Skiing shoes": 149,
|
810 |
+
"Skiboard": 120,
|
811 |
+
"Slide": 215,
|
812 |
+
"Slippers": 46,
|
813 |
+
"Sneakers": 2,
|
814 |
+
"Snowboard": 174,
|
815 |
+
"Soap": 294,
|
816 |
+
"Soccer": 119,
|
817 |
+
"Speaker": 42,
|
818 |
+
"Speed Limit Sign": 268,
|
819 |
+
"Spoon": 94,
|
820 |
+
"Sports Car": 127,
|
821 |
+
"Spring Rolls": 341,
|
822 |
+
"Stapler": 307,
|
823 |
+
"Steak": 305,
|
824 |
+
"Stool": 48,
|
825 |
+
"Stop Sign": 128,
|
826 |
+
"Storage box": 21,
|
827 |
+
"Strawberry": 156,
|
828 |
+
"Street Lights": 12,
|
829 |
+
"Stroller": 131,
|
830 |
+
"Stuffed Toy": 71,
|
831 |
+
"Surfboard": 147,
|
832 |
+
"Surveillance Camera": 139,
|
833 |
+
"Sushi": 280,
|
834 |
+
"Swan": 263,
|
835 |
+
"Swing": 213,
|
836 |
+
"Table Tennis": 365,
|
837 |
+
"Table Tennis paddle": 355,
|
838 |
+
"Tablet": 244,
|
839 |
+
"Tape": 243,
|
840 |
+
"Tape Measure/Ruler": 300,
|
841 |
+
"Target": 339,
|
842 |
+
"Tea pot": 123,
|
843 |
+
"Telephone": 124,
|
844 |
+
"Tennis": 211,
|
845 |
+
"Tennis Racket": 205,
|
846 |
+
"Tent": 78,
|
847 |
+
"Tie": 44,
|
848 |
+
"Tissue": 226,
|
849 |
+
"Toaster": 278,
|
850 |
+
"Toilet": 154,
|
851 |
+
"Toilet Paper": 161,
|
852 |
+
"Toiletry": 106,
|
853 |
+
"Tomato": 108,
|
854 |
+
"Tong": 204,
|
855 |
+
"Toothbrush": 227,
|
856 |
+
"Towel": 70,
|
857 |
+
"Traffic Light": 41,
|
858 |
+
"Traffic Sign": 90,
|
859 |
+
"Traffic cone": 67,
|
860 |
+
"Train": 117,
|
861 |
+
"Trash bin Can": 45,
|
862 |
+
"Treadmill": 332,
|
863 |
+
"Tricycle": 184,
|
864 |
+
"Tripod": 92,
|
865 |
+
"Trolley": 125,
|
866 |
+
"Trombone": 271,
|
867 |
+
"Trophy": 233,
|
868 |
+
"Truck": 66,
|
869 |
+
"Trumpet": 246,
|
870 |
+
"Tuba": 316,
|
871 |
+
"Umbrella": 40,
|
872 |
+
"Urinal": 326,
|
873 |
+
"Van": 50,
|
874 |
+
"Vase": 31,
|
875 |
+
"Violin": 185,
|
876 |
+
"Volleyball": 240,
|
877 |
+
"Wallet/Purse": 239,
|
878 |
+
"Washing Machine/Drying Machine": 221,
|
879 |
+
"Watch": 43,
|
880 |
+
"Watermelon": 224,
|
881 |
+
"Wheelchair": 193,
|
882 |
+
"Wild Bird": 57,
|
883 |
+
"Wine Glass": 36,
|
884 |
+
"Yak": 345,
|
885 |
+
"Zebra": 179,
|
886 |
+
"earphone": 208
|
887 |
+
},
|
888 |
+
"label_noise_ratio": 0.5,
|
889 |
+
"layer_norm_eps": 1e-05,
|
890 |
+
"layer_scale": 1,
|
891 |
+
"learn_initial_query": false,
|
892 |
+
"lqe_hidden_dim": 64,
|
893 |
+
"lqe_layers": 2,
|
894 |
+
"matcher_alpha": 0.25,
|
895 |
+
"matcher_bbox_cost": 5.0,
|
896 |
+
"matcher_class_cost": 2.0,
|
897 |
+
"matcher_gamma": 2.0,
|
898 |
+
"matcher_giou_cost": 2.0,
|
899 |
+
"max_num_bins": 32,
|
900 |
+
"model_type": "d_fine",
|
901 |
+
"normalize_before": false,
|
902 |
+
"num_denoising": 100,
|
903 |
+
"num_feature_levels": 3,
|
904 |
+
"num_queries": 300,
|
905 |
+
"positional_encoding_temperature": 10000,
|
906 |
+
"reg_scale": 4.0,
|
907 |
+
"top_prob_values": 4,
|
908 |
+
"transformers_version": "4.51.0.dev0",
|
909 |
+
"up": 0.5,
|
910 |
+
"use_focal_loss": true,
|
911 |
+
"use_pretrained_backbone": false,
|
912 |
+
"use_timm_backbone": false,
|
913 |
+
"weight_loss_bbox": 5.0,
|
914 |
+
"weight_loss_ddf": 1.5,
|
915 |
+
"weight_loss_fgl": 0.15,
|
916 |
+
"weight_loss_giou": 2.0,
|
917 |
+
"weight_loss_vfl": 1.0,
|
918 |
+
"with_box_refine": true
|
919 |
+
}
|