File size: 2,811 Bytes
59f0b5e
 
fa69062
 
 
 
 
 
 
 
 
59f0b5e
fa69062
 
 
 
 
 
 
 
59f0b5e
2b5e694
59f0b5e
473bcb5
 
 
 
 
 
fa69062
2b1783d
2b5e694
59f0b5e
1bda6ea
8c30d1a
fa69062
59f0b5e
2b5e694
 
 
59f0b5e
2b5e694
 
59f0b5e
2b5e694
 
59f0b5e
f79e65b
 
59f0b5e
2b5e694
59f0b5e
2b5e694
 
59f0b5e
2b5e694
59f0b5e
2b5e694
 
 
 
fa69062
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: apache-2.0
language:
  - en
pipeline_tag: object-detection
tags:
  - object-detection
  - vision
datasets:
  - coco
---
## D-FINE

### **Overview**

The D-FINE model was proposed in [D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement](https://arxiv.org/abs/2410.13842) by
Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, Feng Wu

This model was contributed by [VladOS95-cyber](https://github.com/VladOS95-cyber) with the help of [@qubvel-hf](https://huggingface.co/qubvel-hf)

This is the HF transformers implementation for D-FINE

_coco -> model trained on COCO

_obj365 -> model trained on Object365

_obj2coco -> model trained on Object365 and then finetuned on COCO

### **Performance**

D-FINE, a powerful real-time object detector that achieves outstanding localization precision by redefining the bounding box regression task in DETR models. D-FINE comprises two key components: Fine-grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation (GO-LSD). 

![COCO.png](https://huggingface.co/datasets/vladislavbro/images/resolve/main/COCO.PNG)

### **How to use**

```python
import torch
import requests

from PIL import Image
from transformers import DFineForObjectDetection, AutoImageProcessor

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)

image_processor = AutoImageProcessor.from_pretrained("ustc-community/dfine-small-coco")
model = DFineForObjectDetection.from_pretrained("ustc-community/dfine-small-coco")

inputs = image_processor(images=image, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)

results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)

for result in results:
    for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
        score, label = score.item(), label_id.item()
        box = [round(i, 2) for i in box.tolist()]
        print(f"{model.config.id2label[label]}: {score:.2f} {box}")
```

### **Training**

D-FINE is trained on COCO (Lin et al. [2014]) train2017 and validated on COCO val2017 dataset. We report the standard AP metrics (averaged over uniformly sampled IoU thresholds ranging from 0.50 − 0.95 with a step size of 0.05), and APval5000 commonly used in real scenarios.

### **Applications**
D-FINE is ideal for real-time object detection in diverse applications such as **autonomous driving**, **surveillance systems**, **robotics**, and **retail analytics**. Its enhanced flexibility and deployment-friendly design make it suitable for both edge devices and large-scale systems + ensures high accuracy and speed in dynamic, real-world environments.