File size: 15,135 Bytes
129c05b
 
19649d5
 
129c05b
 
 
 
 
 
 
 
19649d5
129c05b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19649d5
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import re
from typing import List, Optional, Union, Dict, Any

import math
import numpy as np
import scipy.signal
import torch
from torch.nn.utils.rnn import pad_sequence
from transformers.audio_utils import AudioInput
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import make_nested_list_of_images
from transformers.processing_utils import ProcessorMixin, ProcessingKwargs, ImagesKwargs, Unpack
from transformers.utils import TensorType, to_py_obj, logging

# Constants
DEFAULT_SAMPLING_RATE = 16000
DEFAULT_N_FFT = 512
DEFAULT_WIN_LENGTH = 400
DEFAULT_HOP_LENGTH = 160
DEFAULT_N_MELS = 80
DEFAULT_COMPRESSION_RATE = 4
DEFAULT_QFORMER_RATE = 2
DEFAULT_FEAT_STRIDE = 4
IMAGE_TOKEN_PATTERN = r"<\|image_\d+\|>"
AUDIO_TOKEN_PATTERN = r"<\|audio_\d+\|>"
DEFAULT_MAX_LENGTH = 16384

logger = logging.get_logger(__name__)


def create_mel_filterbank(sampling_rate: int, n_fft: int, n_mels: int, fmin: float = 0.0,
                          fmax: Optional[float] = None) -> np.ndarray:
    """Create Mel filterbank for audio processing."""
    fmax = fmax or sampling_rate / 2

    def hz_to_mel(f: float) -> float:
        return 1127.0 * math.log(1 + f / 700.0)

    mel_points = np.linspace(hz_to_mel(fmin), hz_to_mel(fmax), n_mels + 2)
    freq_points = 700.0 * (np.exp(mel_points / 1127.0) - 1)
    bins = np.floor((n_fft + 1) * freq_points / sampling_rate).astype(int)

    filterbank = np.zeros((n_mels, n_fft // 2 + 1), dtype=np.float32)
    for m in range(1, n_mels + 1):
        left, center, right = bins[m - 1:m + 2]
        filterbank[m - 1, left:center] = (np.arange(left, center) - left) / (center - left)
        filterbank[m - 1, center:right] = (right - np.arange(center, right)) / (right - center)

    return filterbank


class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
    """Converts 16-kHz mono waveform to (T, 80) log-Mel frames."""

    model_input_names = ["input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"]

    def __init__(
            self,
            compression_rate: int = DEFAULT_COMPRESSION_RATE,
            qformer_rate: int = DEFAULT_QFORMER_RATE,
            feat_stride: int = DEFAULT_FEAT_STRIDE,
            sampling_rate: int = DEFAULT_SAMPLING_RATE,
            n_fft: int = DEFAULT_N_FFT,
            win_length: int = DEFAULT_WIN_LENGTH,
            hop_length: int = DEFAULT_HOP_LENGTH,
            n_mels: int = DEFAULT_N_MELS,
            **kwargs
    ):
        super().__init__(n_mels, sampling_rate, 0.0, **kwargs)
        self.compression_rate = compression_rate
        self.qformer_rate = qformer_rate
        self.feat_stride = feat_stride
        self.sampling_rate = sampling_rate

        self.window = np.hamming(win_length).astype(np.float32)
        self.mel_filterbank = create_mel_filterbank(sampling_rate, n_fft, n_mels).T
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length

    def __call__(
            self,
            audios: List[AudioInput],
            return_tensors: Union[TensorType, str, None] = TensorType.PYTORCH
    ) -> BatchFeature:
        features, sizes, frames = [], [], []

        for wav in audios:
            processed_wav = self._preprocess_audio(wav, 22500)
            mel_spectrogram = self._compute_log_mel_spectrogram(processed_wav)
            feature_tensor = torch.tensor(mel_spectrogram, dtype=torch.float32)
            features.append(feature_tensor)
            sizes.append(torch.tensor(self._calculate_embed_length(feature_tensor.shape[0])))
            frames.append(feature_tensor.shape[0] * self.feat_stride)

        audio_embeds = pad_sequence(features, batch_first=True)
        size_tensor = torch.stack(sizes)

        attention_mask = None
        if len(audios) > 1:
            frame_lengths = torch.tensor(frames)
            attention_mask = torch.arange(frame_lengths.max()).unsqueeze(0) < frame_lengths.unsqueeze(1)

        output_data = {
            "input_audio_embeds": audio_embeds,
            "audio_embed_sizes": size_tensor
        }
        if attention_mask is not None:
            output_data["audio_attention_mask"] = attention_mask

        return BatchFeature(data=output_data, tensor_type=return_tensors)

    def _preprocess_audio(self, wav: np.ndarray, source_sr: int) -> np.ndarray:
        wav = torch.as_tensor(wav).float().numpy()
        if wav.ndim > 1:
            wav = wav.mean(axis=0)
        if source_sr != self.sampling_rate:
            wav = scipy.signal.resample_poly(wav, self.sampling_rate, source_sr)
        return wav / max(np.abs(wav).max(), 1e-6)

    def _compute_log_mel_spectrogram(self, wav: np.ndarray) -> np.ndarray:
        frame_count = 1 + (len(wav) - self.win_length) // self.hop_length
        strides = wav.strides[0]
        frames = np.lib.stride_tricks.as_strided(
            wav,
            shape=(frame_count, self.win_length),
            strides=(strides * self.hop_length, strides),
            writeable=False
        ).copy()
        frames *= self.window

        spectrum = np.fft.rfft(frames, n=self.n_fft).astype(np.complex64)
        power = np.abs(spectrum) ** 2
        mel_spectrogram = np.dot(power, self.mel_filterbank)
        mel_spectrogram = np.clip(mel_spectrogram, 1.0, None)
        return np.log(mel_spectrogram, dtype=np.float32)

    def _calculate_embed_length(self, frame_count: int) -> int:
        compressed = math.ceil(frame_count / self.compression_rate)
        return math.ceil(compressed / self.qformer_rate)


class Gemma3ImagesKwargs(ImagesKwargs):
    do_pan_and_scan: Optional[bool]
    pan_and_scan_min_crop_size: Optional[int]
    pan_and_scan_max_num_crops: Optional[int]
    pan_and_scan_min_ratio_to_activate: Optional[float]
    do_convert_rgb: Optional[bool]


class Gemma3ProcessorKwargs(ProcessingKwargs, total=False):
    images_kwargs: Dict[str, Any]
    audio_kwargs: Dict[str, Any]
    _defaults = {
        "text_kwargs": {"padding": False, "truncation": False, "max_length": DEFAULT_MAX_LENGTH},
        "images_kwargs": {},
        "audio_kwargs": {}
    }


class Gemma3OmniProcessor(ProcessorMixin):
    attributes = ["image_processor", "tokenizer", "audio_processor"]
    valid_kwargs = ["chat_template", "image_seq_length"]
    image_processor_class = "AutoImageProcessor"
    audio_processor_class = "AutoFeatureExtractor"
    tokenizer_class = "AutoTokenizer"

    def __init__(
            self,
            image_processor,
            audio_processor,
            tokenizer,
            chat_template=None,
            image_seq_length: int = 256,
            **kwargs
    ):
        self.image_seq_length = image_seq_length
        self.image_token_id = tokenizer.image_token_id
        self.boi_token = tokenizer.boi_token
        self.image_token = tokenizer.image_token
        self.audio_token = "<audio_soft_token>"
        self.expected_audio_token_id = 262143
        self.full_image_sequence = f"\n\n{tokenizer.boi_token}{''.join([tokenizer.image_token] * image_seq_length)}{tokenizer.eoi_token}\n\n"

        self.compression_rate = 8
        self.qformer_compression_rate = 1
        self.feat_stride = 1

        self.audio_token_id = tokenizer.convert_tokens_to_ids(self.audio_token)
        if self.audio_token_id != self.expected_audio_token_id:
            logger.warning(
                f"Assigned ID {self.audio_token_id} for '{self.audio_token}' does not match expected ID {self.expected_audio_token_id}. "
                "Using assigned ID. Model embedding layer may need resizing."
            )

        super().__init__(
            image_processor=image_processor,
            audio_processor=audio_processor,
            tokenizer=tokenizer,
            chat_template=chat_template,
            **kwargs
        )

    def _merge_kwargs(self, ModelProcessorKwargs, tokenizer_init_kwargs, **kwargs):
        default_kwargs = {}
        for modality in ModelProcessorKwargs._defaults:
            default_kwargs[modality] = ModelProcessorKwargs._defaults.get(modality, {}).copy()

        # Update defaults with tokenizer init kwargs
        for modality in default_kwargs:
            modality_kwargs = default_kwargs[modality]
            for key in modality_kwargs:
                if key in tokenizer_init_kwargs:
                    value = (
                        getattr(self.tokenizer, key)
                        if hasattr(self.tokenizer, key)
                        else tokenizer_init_kwargs[key]
                    )
                    modality_kwargs[key] = value

        # Update with user-provided kwargs
        for modality in default_kwargs:
            if modality in kwargs:
                default_kwargs[modality].update(kwargs[modality])

        # Ensure text_kwargs has truncation=False and large max_length
        default_kwargs["text_kwargs"]["truncation"] = False
        default_kwargs["text_kwargs"]["max_length"] = default_kwargs["text_kwargs"].get("max_length",
                                                                                        DEFAULT_MAX_LENGTH)

        return default_kwargs

    def _compute_audio_embed_size(self, audio_frames: int) -> int:
        result = math.ceil(audio_frames / self.compression_rate)
        return math.ceil(result / self.qformer_compression_rate)

    def __call__(
            self,
            images=None,
            text=None,
            videos=None,
            audio=None,
            **kwargs: Unpack[Gemma3ProcessorKwargs]
    ) -> BatchFeature:
        if text is None and images is None:
            raise ValueError("Provide at least one of `text` or `images`.")

        output_kwargs = self._merge_kwargs(
            Gemma3ProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs
        )

        if isinstance(text, str):
            text = [text]
        elif not isinstance(text, list) or not all(isinstance(t, str) for t in text):
            raise ValueError("Input text must be a string or list of strings")

        image_inputs = {}
        if images is not None:
            batched_images = make_nested_list_of_images(images)
            image_inputs = self.image_processor(batched_images, **output_kwargs["images_kwargs"])

            if not text:
                text = [" ".join([self.boi_token] * len(images)) for images in batched_images]

            if len(batched_images) != len(text):
                raise ValueError(
                    f"Inconsistent batch sizes: {len(batched_images)} images, {len(text)} texts"
                )

            num_crops = to_py_obj(image_inputs.pop("num_crops"))
            batch_num_crops = [[num_crops.pop(0) for _ in range(len(images))] for images in batched_images]

            for batch_idx, (prompt, images, crops) in enumerate(zip(text, batched_images, batch_num_crops)):
                image_indexes = [m.start() for m in re.finditer(self.boi_token, prompt)]
                if len(images) != len(image_indexes):
                    raise ValueError(
                        f"Prompt has {len(image_indexes)} image tokens but received {len(images)} images"
                    )

                for num, idx in reversed(list(zip(crops, image_indexes))):
                    if num:
                        formatted_image_text = (
                                f"Here is the original image {self.boi_token} and here are some crops to help you see better "
                                + " ".join([self.boi_token] * num)
                        )
                        prompt = prompt[:idx] + formatted_image_text + prompt[idx + len(self.boi_token):]
                        text[batch_idx] = prompt

            text = [prompt.replace(self.boi_token, self.full_image_sequence) for prompt in text]

        audio_inputs = {}
        if audio is not None:
            audio_inputs = self.audio_processor(audio, "pt")
            audio_embeds = audio_inputs['input_audio_embeds']
            audio_frames = audio_embeds.shape[1] * self.feat_stride
            audio_seq_length = self._compute_audio_embed_size(audio_frames)

            audio_tokens = {
                "boa_token": "<start_of_audio>",
                "eoa_token": "<end_of_audio>",
                "audio_token": "<audio_soft_token>",
                "boa_token_id": 256001,
                "eoa_token_id": 256002,
                "audio_token_id": self.audio_token_id  # Use dynamic ID
            }

            audio_sequence = f"\n\n{audio_tokens['boa_token']}{''.join([audio_tokens['audio_token']] * audio_seq_length)}{audio_tokens['eoa_token']}\n\n"
            text = [prompt.replace(audio_tokens['boa_token'], audio_sequence) for prompt in text]

        return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
        text_inputs = self.tokenizer(text=text, **output_kwargs["text_kwargs"], return_tensors="np")

        # Debug: Log text and token counts before validation
        for i, (txt, ids) in enumerate(zip(text, text_inputs["input_ids"])):
            audio_text_count = txt.count(self.audio_token)
            audio_ids_count = list(ids).count(self.audio_token_id)
            logger.debug(
                f"Sample {i}: Audio tokens in text={audio_text_count}, in input_ids={audio_ids_count}, "
                f"Text length={len(txt)}, Input IDs length={len(ids)}"
            )

        self._check_special_mm_tokens(text, text_inputs, modalities=["image", "audio"])

        array_ids = text_inputs["input_ids"]
        mm_token_type_ids = np.zeros_like(array_ids)
        mm_token_type_ids[array_ids == self.image_token_id] = 1  # Image token type
        mm_token_type_ids[array_ids == self.audio_token_id] = 2  # Audio token type
        text_inputs = {k: v.tolist() for k, v in text_inputs.items()}
        text_inputs["token_type_ids"] = mm_token_type_ids.tolist()

        return BatchFeature(data={**text_inputs, **image_inputs, **audio_inputs}, tensor_type=return_tensors)

    def batch_decode(self, *args, **kwargs):
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_inputs = self.tokenizer.model_input_names + ["token_type_ids"]
        image_processor_inputs = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_inputs + image_processor_inputs))


# ──────────────────────────────────────────────────────────────────────────────
# exports
# ──────────────────────────────────────────────────────────────────────────────
__all__ = [
    "Gemma3OmniProcessor",
    "Gemma3AudioFeatureExtractor"
]