# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MTPQwen3 model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.modeling_rope_utils import rope_config_validation from transformers.utils import logging logger = logging.get_logger(__name__) class MTPQwen3Config(PretrainedConfig): model_type = "mtpqwen3" keys_to_ignore_at_inference = ["past_key_values"] # Default tensor parallel plan for base model `MTPQwen3` base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, vocab_size=151936, hidden_size=1024, intermediate_size=3072, num_hidden_layers=24, num_decoding_layers=4, num_attention_heads=16, num_key_value_heads=8, head_dim=128, hidden_act="silu", max_position_embeddings=40960, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, tie_word_embeddings=True, rope_theta=1000000, rope_scaling=None, attention_bias=False, use_sliding_window=False, sliding_window=None, max_window_layers=28, attention_dropout=0.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_decoding_layers = num_decoding_layers self.num_attention_heads = num_attention_heads self.use_sliding_window = use_sliding_window self.sliding_window = sliding_window # we check `use_sliding_window` in the modeling code self.max_window_layers = max_window_layers # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.head_dim = head_dim self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs, ) __all__ = ["MTPQwen3Config"]