--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer model-index: - name: meta-llama/Llama-3.2-3B results: [] --- # meta-llama/Llama-3.2-3B This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7972 | 0.0275 | 200 | 0.8336 | | 0.7579 | 0.0551 | 400 | 0.7996 | | 0.8037 | 0.0826 | 600 | 0.7918 | | 0.7333 | 0.1101 | 800 | 0.7879 | | 0.7871 | 0.1376 | 1000 | 0.7818 | | 0.8135 | 0.1652 | 1200 | 0.7736 | | 0.7612 | 0.1927 | 1400 | 0.7699 | | 0.7421 | 0.2202 | 1600 | 0.7643 | | 0.7451 | 0.2478 | 1800 | 0.7595 | | 0.7388 | 0.2753 | 2000 | 0.7556 | | 0.7707 | 0.3028 | 2200 | 0.7523 | | 0.7063 | 0.3303 | 2400 | 0.7481 | | 0.8091 | 0.3579 | 2600 | 0.7440 | | 0.764 | 0.3854 | 2800 | 0.7407 | | 0.714 | 0.4129 | 3000 | 0.7370 | | 0.6745 | 0.4405 | 3200 | 0.7339 | | 0.6771 | 0.4680 | 3400 | 0.7295 | | 0.7419 | 0.4955 | 3600 | 0.7257 | | 0.71 | 0.5230 | 3800 | 0.7223 | | 0.6362 | 0.5506 | 4000 | 0.7189 | | 0.7616 | 0.5781 | 4200 | 0.7159 | | 0.676 | 0.6056 | 4400 | 0.7126 | | 0.6732 | 0.6332 | 4600 | 0.7094 | | 0.7017 | 0.6607 | 4800 | 0.7067 | | 0.6796 | 0.6882 | 5000 | 0.7038 | | 0.7065 | 0.7157 | 5200 | 0.7012 | | 0.6318 | 0.7433 | 5400 | 0.6987 | | 0.639 | 0.7708 | 5600 | 0.6965 | | 0.7078 | 0.7983 | 5800 | 0.6949 | | 0.7029 | 0.8258 | 6000 | 0.6933 | | 0.6977 | 0.8534 | 6200 | 0.6921 | | 0.6803 | 0.8809 | 6400 | 0.6911 | | 0.703 | 0.9084 | 6600 | 0.6905 | | 0.6819 | 0.9360 | 6800 | 0.6901 | | 0.6327 | 0.9635 | 7000 | 0.6899 | | 0.6685 | 0.9910 | 7200 | 0.6899 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.21.0