added model card and model weights
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# XPDNet-brain-af8
|
2 |
+
---
|
3 |
+
tags:
|
4 |
+
- TensorFlow
|
5 |
+
- MRI reconstruction
|
6 |
+
- MRI
|
7 |
+
datasets:
|
8 |
+
- fastMRI
|
9 |
+
---
|
10 |
+
|
11 |
+
This model was used to achieve the 2nd highest submission in terms of PSNR on the fastMRI dataset (see https://fastmri.org/leaderboards/).
|
12 |
+
It is a base model for acceleration factor 8.
|
13 |
+
The model uses 25 iterations and a medium MWCNN, and a big sensitivity maps refiner.
|
14 |
+
|
15 |
+
## Model description
|
16 |
+
For more details, see https://arxiv.org/abs/2010.07290.
|
17 |
+
This section is WIP.
|
18 |
+
|
19 |
+
## Intended uses and limitations
|
20 |
+
This model can be used to reconstruct brain data from Siemens scanner at acceleration factor 8.
|
21 |
+
It was shown [here](https://arxiv.org/abs/2106.00753), that it can generalize well, although further tests are required.
|
22 |
+
|
23 |
+
## How to use
|
24 |
+
This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark.
|
25 |
+
After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`.
|
26 |
+
The framework is TensorFlow.
|
27 |
+
|
28 |
+
You can initialize and load the model weights as follows:
|
29 |
+
```python
|
30 |
+
import tensorflow as tf
|
31 |
+
|
32 |
+
from fastmri_recon.models.subclassed_models.denoisers.proposed_params import get_model_specs
|
33 |
+
from fastmri_recon.models.subclassed_models.xpdnet import XPDNet
|
34 |
+
|
35 |
+
|
36 |
+
n_primal = 5
|
37 |
+
model_fun, model_kwargs, n_scales, res = [
|
38 |
+
(model_fun, kwargs, n_scales, res)
|
39 |
+
for m_name, m_size, model_fun, kwargs, _, n_scales, res in get_model_specs(n_primal=n_primal, force_res=False)
|
40 |
+
if m_name == 'MWCNN' and m_size == 'medium'
|
41 |
+
][0]
|
42 |
+
model_kwargs['use_bias'] = False
|
43 |
+
run_params = dict(
|
44 |
+
n_primal=n_primal,
|
45 |
+
multicoil=True,
|
46 |
+
n_scales=n_scales,
|
47 |
+
refine_smaps=True,
|
48 |
+
refine_big=True,
|
49 |
+
res=res,
|
50 |
+
output_shape_spec=True,
|
51 |
+
n_iter=25,
|
52 |
+
)
|
53 |
+
model = XPDNet(model_fun, model_kwargs, **run_params)
|
54 |
+
kspace_size = [1, 1, 320, 320]
|
55 |
+
inputs = [
|
56 |
+
tf.zeros(kspace_size + [1], dtype=tf.complex64), # kspace
|
57 |
+
tf.zeros(kspace_size, dtype=tf.complex64), # mask
|
58 |
+
tf.zeros(kspace_size, dtype=tf.complex64), # smaps
|
59 |
+
tf.constant([[320, 320]]), # shape
|
60 |
+
]
|
61 |
+
model(inputs)
|
62 |
+
model.load_weights('xpdnet_sense_brain__af8_i25_compound_mssim_rf_smb_MWCNNmedium_1601987069-100.h5')
|
63 |
+
```
|
64 |
+
|
65 |
+
Using the model is then as simple as:
|
66 |
+
```python
|
67 |
+
model([
|
68 |
+
kspace, # shape: [n_slices, n_coils, n_rows, n_cols, 1]
|
69 |
+
mask, # shape: [n_slices, n_coils, n_rows, n_cols]
|
70 |
+
smaps, # shape: [n_slices, n_coils, n_rows, n_cols]
|
71 |
+
shape, # shape: [n_slices, 2]
|
72 |
+
])
|
73 |
+
```
|
74 |
+
|
75 |
+
## Limitations and bias
|
76 |
+
The limitations and bias of this model have not been properly investigated.
|
77 |
+
|
78 |
+
## Training data
|
79 |
+
This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/).
|
80 |
+
|
81 |
+
## Training procedure
|
82 |
+
The training procedure is described in https://arxiv.org/abs/2010.07290.
|
83 |
+
This section is WIP.
|
84 |
+
|
85 |
+
## Evaluation results
|
86 |
+
On the fastMRI validation dataset, the same model with a smaller sensitivity maps refiner gives the following results for 30 validation volumes per contrast:
|
87 |
+
|
88 |
+
| Contrast | T1 | T2 | FLAIR | T1-POST |
|
89 |
+
|----------|--------|--------|--------|---------|
|
90 |
+
| PSNR | 38.57 | 37.41 | 36.81 | 38.90 |
|
91 |
+
| SSIM | 0.9348 | 0.9404 | 0.9086 | 0.9517 |
|
92 |
+
|
93 |
+
Further results can be seen on the fastMRI leaderboards for the test and challenge dataset: https://fastmri.org/leaderboards/
|
94 |
+
|
95 |
+
|
96 |
+
## Bibtex entry
|
97 |
+
```
|
98 |
+
@inproceedings{Ramzi2020d,
|
99 |
+
archivePrefix = {arXiv},
|
100 |
+
arxivId = {2010.07290},
|
101 |
+
author = {Ramzi, Zaccharie and Ciuciu, Philippe and Starck, Jean-Luc},
|
102 |
+
booktitle = {ISMRM},
|
103 |
+
eprint = {2010.07290},
|
104 |
+
pages = {1--4},
|
105 |
+
title = {{XPDNet for MRI Reconstruction: an application to the 2020 fastMRI challenge}},
|
106 |
+
url = {http://arxiv.org/abs/2010.07290},
|
107 |
+
year = {2021}
|
108 |
+
}
|
109 |
+
```
|
110 |
+
|
xpdnet_sense_brain__af8_i25_compound_mssim_rf_smb_MWCNNmedium_1601987069-100.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfc48357db9fb59b4cd6c91387ee8e5b7e5dac5ca31169860a4d8e06365dbd07
|
3 |
+
size 623781912
|