Example88 commited on
Commit
aebb0b0
·
1 Parent(s): 92725d5

added model card and model weights

Browse files
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # XPDNet-brain-af8
2
+ ---
3
+ tags:
4
+ - TensorFlow
5
+ - MRI reconstruction
6
+ - MRI
7
+ datasets:
8
+ - fastMRI
9
+ ---
10
+
11
+ This model was used to achieve the 2nd highest submission in terms of PSNR on the fastMRI dataset (see https://fastmri.org/leaderboards/).
12
+ It is a base model for acceleration factor 8.
13
+ The model uses 25 iterations and a medium MWCNN, and a big sensitivity maps refiner.
14
+
15
+ ## Model description
16
+ For more details, see https://arxiv.org/abs/2010.07290.
17
+ This section is WIP.
18
+
19
+ ## Intended uses and limitations
20
+ This model can be used to reconstruct brain data from Siemens scanner at acceleration factor 8.
21
+ It was shown [here](https://arxiv.org/abs/2106.00753), that it can generalize well, although further tests are required.
22
+
23
+ ## How to use
24
+ This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark.
25
+ After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`.
26
+ The framework is TensorFlow.
27
+
28
+ You can initialize and load the model weights as follows:
29
+ ```python
30
+ import tensorflow as tf
31
+
32
+ from fastmri_recon.models.subclassed_models.denoisers.proposed_params import get_model_specs
33
+ from fastmri_recon.models.subclassed_models.xpdnet import XPDNet
34
+
35
+
36
+ n_primal = 5
37
+ model_fun, model_kwargs, n_scales, res = [
38
+ (model_fun, kwargs, n_scales, res)
39
+ for m_name, m_size, model_fun, kwargs, _, n_scales, res in get_model_specs(n_primal=n_primal, force_res=False)
40
+ if m_name == 'MWCNN' and m_size == 'medium'
41
+ ][0]
42
+ model_kwargs['use_bias'] = False
43
+ run_params = dict(
44
+ n_primal=n_primal,
45
+ multicoil=True,
46
+ n_scales=n_scales,
47
+ refine_smaps=True,
48
+ refine_big=True,
49
+ res=res,
50
+ output_shape_spec=True,
51
+ n_iter=25,
52
+ )
53
+ model = XPDNet(model_fun, model_kwargs, **run_params)
54
+ kspace_size = [1, 1, 320, 320]
55
+ inputs = [
56
+ tf.zeros(kspace_size + [1], dtype=tf.complex64), # kspace
57
+ tf.zeros(kspace_size, dtype=tf.complex64), # mask
58
+ tf.zeros(kspace_size, dtype=tf.complex64), # smaps
59
+ tf.constant([[320, 320]]), # shape
60
+ ]
61
+ model(inputs)
62
+ model.load_weights('xpdnet_sense_brain__af8_i25_compound_mssim_rf_smb_MWCNNmedium_1601987069-100.h5')
63
+ ```
64
+
65
+ Using the model is then as simple as:
66
+ ```python
67
+ model([
68
+ kspace, # shape: [n_slices, n_coils, n_rows, n_cols, 1]
69
+ mask, # shape: [n_slices, n_coils, n_rows, n_cols]
70
+ smaps, # shape: [n_slices, n_coils, n_rows, n_cols]
71
+ shape, # shape: [n_slices, 2]
72
+ ])
73
+ ```
74
+
75
+ ## Limitations and bias
76
+ The limitations and bias of this model have not been properly investigated.
77
+
78
+ ## Training data
79
+ This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/).
80
+
81
+ ## Training procedure
82
+ The training procedure is described in https://arxiv.org/abs/2010.07290.
83
+ This section is WIP.
84
+
85
+ ## Evaluation results
86
+ On the fastMRI validation dataset, the same model with a smaller sensitivity maps refiner gives the following results for 30 validation volumes per contrast:
87
+
88
+ | Contrast | T1 | T2 | FLAIR | T1-POST |
89
+ |----------|--------|--------|--------|---------|
90
+ | PSNR | 38.57 | 37.41 | 36.81 | 38.90 |
91
+ | SSIM | 0.9348 | 0.9404 | 0.9086 | 0.9517 |
92
+
93
+ Further results can be seen on the fastMRI leaderboards for the test and challenge dataset: https://fastmri.org/leaderboards/
94
+
95
+
96
+ ## Bibtex entry
97
+ ```
98
+ @inproceedings{Ramzi2020d,
99
+ archivePrefix = {arXiv},
100
+ arxivId = {2010.07290},
101
+ author = {Ramzi, Zaccharie and Ciuciu, Philippe and Starck, Jean-Luc},
102
+ booktitle = {ISMRM},
103
+ eprint = {2010.07290},
104
+ pages = {1--4},
105
+ title = {{XPDNet for MRI Reconstruction: an application to the 2020 fastMRI challenge}},
106
+ url = {http://arxiv.org/abs/2010.07290},
107
+ year = {2021}
108
+ }
109
+ ```
110
+
xpdnet_sense_brain__af8_i25_compound_mssim_rf_smb_MWCNNmedium_1601987069-100.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfc48357db9fb59b4cd6c91387ee8e5b7e5dac5ca31169860a4d8e06365dbd07
3
+ size 623781912