File size: 6,859 Bytes
d33174a 76e32dd 457793d 976c513 d33174a 457793d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
base_model:
- Qwen/Qwen2.5-VL-3B-Instruct
datasets:
- zackriya/diagramJSON
library_name: peft
tags:
- diagram
- structured-data
- image-processing
- knowledge-graph
- json
license: apache-2.0
pipeline_tag: visual-document-retrieval
---
# πΌοΈπ Diagram-to-Graph Model
<div align="center">
<img src="https://github.com/Zackriya-Solutions/diagram2graph/blob/main/docs/diagram2graph_cmpr.png?raw=true" width="800" style="border-radius:10px;" alt="Diagram to Graph Header"/>
</div>
This model is a research-driven project built during an internship at [Zackariya Solution](https://www.zackriya.com/). It specializes in extracting **structured data(JSON)** from images, particularly **nodes, edges, and their sub-attributes** to represent visual information as knowledge graphs.
> π **Note:** This model is intended for **learning purposes** only and not for production applications. The extracted structured data may vary based on project needs.
## π Model Details
- **Developed by:** Zackariya Solution Internship Team(Mohammed Safvan)
- **Fine Tuned from:** `Qwen/Qwen2.5-VL-3B-Instruct`
- **License:** Apache 2.0
- **Language(s):** Multilingual (focus on structured extraction)
- **Model type:** Vision-Language Transformer (PEFT fine-tuned)
## π― Use Cases
### β
Direct Use
- Experimenting with **diagram-to-graph conversion** π
- Understanding **AI-driven structured extraction** from images
### π Downstream Use (Potential)
- Enhancing **BPMN/Flowchart** analysis ποΈ
- Supporting **automated document processing** π
### β Out-of-Scope Use
- Not designed for **real-world production** deployment β οΈ
- May not generalize well across **all diagram types**
## π How to Use
```python
%pip install -q "transformers>=4.49.0" accelerate datasets "qwen-vl-utils[decord]==0.0.8"
import os
import PIL
import torch
from qwen_vl_utils import process_vision_info
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
MODEL_ID="zackriya/diagram2graph"
MAX_PIXELS = 1280 * 28 * 28
MIN_PIXELS = 256 * 28 * 28
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype=torch.bfloat16
)
processor = Qwen2_5_VLProcessor.from_pretrained(
MODEL_ID,
min_pixels=MIN_PIXELS,
max_pixels=MAX_PIXELS
)
SYSTEM_MESSAGE = """You are a Vision Language Model specialized in extracting structured data from visual representations of process and flow diagrams.
Your task is to analyze the provided image of a diagram and extract the relevant information into a well-structured JSON format.
The diagram includes details such as nodes and edges. each of them have their own attributes.
Focus on identifying key data fields and ensuring the output adheres to the requested JSON structure.
Provide only the JSON output based on the extracted information. Avoid additional explanations or comments."""
def run_inference(image):
messages= [
{
"role": "system",
"content": [{"type": "text", "text": SYSTEM_MESSAGE}],
},
{
"role": "user",
"content": [
{
"type": "image",
# this image is handled by qwen_vl_utils's process_visio_Info so no need to worry about pil image or path
"image": image,
},
{
"type": "text",
"text": "Extract data in JSON format, Only give the JSON",
},
],
},
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, _ = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
return_tensors="pt",
)
inputs = inputs.to('cuda')
generated_ids = model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [
out_ids[len(in_ids):]
for in_ids, out_ids
in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
return output_text
image = eval_dataset[9]['image'] # PIL image
# `image` could be URL or relative path to the image
output = run_inference(image)
# JSON loading
import json
json.loads(output[0])
```
## ποΈ Training Details
- **Dataset:** Internally curated diagram dataset πΌοΈ
- **Fine-tuning:** LoRA-based optimization β‘
- **Precision:** bf16 mixed-precision training π―
## π Evaluation
- **Metrics:** F1-score π
- **Limitations:** May struggle with **complex, dense diagrams** β οΈ
## Results
- **+14% improvement in node detection**
- **+23% improvement in edge detection**
| Samples | (Base)Node F1 | (Fine)Node F1 | (Base)Edge F1 | (Fine)Edge F1 |
| --------------- | ------------- | ------------- | ------------- | ------------- |
| image_sample_1 | 0.46 | 1.0 | 0.59 | 0.71 |
| image_sample_2 | 0.67 | 0.57 | 0.25 | 0.25 |
| image_sample_3 | 1.0 | 1.0 | 0.25 | 0.75 |
| image_sample_4 | 0.5 | 0.83 | 0.15 | 0.62 |
| image_sample_5 | 0.72 | 0.78 | 0.0 | 0.48 |
| image_sample_6 | 0.75 | 0.75 | 0.29 | 0.67 |
| image_sample_7 | 0.6 | 1.0 | 1.0 | 1.0 |
| image_sample_8 | 0.6 | 1.0 | 1.0 | 1.0 |
| image_sample_9 | 1.0 | 1.0 | 0.55 | 0.77 |
| image_sample_10 | 0.67 | 0.8 | 0.0 | 1.0 |
| image_sample_11 | 0.8 | 0.8 | 0.5 | 1.0 |
| image_sample_12 | 0.67 | 1.0 | 0.62 | 0.75 |
| image_sample_13 | 1.0 | 1.0 | 0.73 | 0.67 |
| image_sample_14 | 0.74 | 0.95 | 0.56 | 0.67 |
| image_sample_15 | 0.86 | 0.71 | 0.67 | 0.67 |
| image_sample_16 | 0.75 | 1.0 | 0.8 | 0.75 |
| image_sample_17 | 0.8 | 1.0 | 0.63 | 0.73 |
| image_sample_18 | 0.83 | 0.83 | 0.33 | 0.43 |
| image_sample_19 | 0.75 | 0.8 | 0.06 | 0.22 |
| image_sample_20 | 0.81 | 1.0 | 0.23 | 0.75 |
| **Mean** | 0.749 | **0.891** | 0.4605 | **0.6945** |
## π€ Collaboration
Are you interested in fine tuning your own model for your use case or want to explore how we can help you? Let's collaborate.
[Zackriya Solutions](https://www.zackriya.com/collaboration-form)
## π References
- [Roboflow](https://github.com/roboflow/notebooks/blob/main/notebooks/how-to-finetune-qwen2-5-vl-for-json-data-extraction.ipynb)
- [Qwen](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct)
<h3 align='center'>
πStay Curious & Keep Exploring!π
</h3> |