zwhe99 commited on
Commit
e3fa52c
·
verified ·
1 Parent(s): fb8cc92

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +150 -170
README.md CHANGED
@@ -1,199 +1,179 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: mit
3
+ datasets:
4
+ - zwhe99/DeepMath-103K
5
+ language:
6
+ - en
7
+ metrics:
8
+ - accuracy
9
+ base_model:
10
+ - deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
11
+ tags:
12
+ - math
13
+ - reasoning
14
+ - rl
15
+ - qwen
16
+ - qwen2
17
+ model-index:
18
+ - name: DeepMath-1.5B
19
+ results:
20
+ - task:
21
+ type: text-generation
22
+ dataset:
23
+ name: MATH500
24
+ type: MATH500
25
+ metrics:
26
+ - type: pass@1
27
+ value: 0.899
28
+ name: pass@1
29
+ verified: false
30
+ - task:
31
+ type: text-generation
32
+ dataset:
33
+ name: AMC23
34
+ type: AMC23
35
+ metrics:
36
+ - type: pass@1
37
+ value: 0.823
38
+ name: pass@1
39
+ verified: false
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ name: OlympiadBench
44
+ type: OlympiadBench
45
+ metrics:
46
+ - type: pass@1
47
+ value: 0.618
48
+ name: pass@1
49
+ verified: false
50
+ - task:
51
+ type: text-generation
52
+ dataset:
53
+ name: MinervaMath
54
+ type: MinervaMath
55
+ metrics:
56
+ - type: pass@1
57
+ value: 0.425
58
+ name: pass@1
59
+ verified: false
60
+ - task:
61
+ type: text-generation
62
+ dataset:
63
+ name: AIME24
64
+ type: AIME24
65
+ metrics:
66
+ - type: pass@1
67
+ value: 0.373
68
+ name: pass@1
69
+ verified: false
70
+ - type: pass@1
71
+ value: 0.308
72
+ name: pass@1
73
+ verified: false
74
  ---
75
 
76
+ # DeepMath-Zero-7B
77
+
78
+ <table>
79
+ <tr>
80
+ <td style="padding: 0;">
81
+ <a href="https://huggingface.co/datasets/zwhe99/DeepMath-103K">
82
+ <img src="https://img.shields.io/badge/Data-4d5eff?style=for-the-badge&logo=huggingface&logoColor=ffffff&labelColor" alt="Data">
83
+ </a>
84
+ </td>
85
+ <td style="padding: 0;">
86
+ <a href="https://huggingface.co/collections/zwhe99/deepmath-6816e139b7f467f21a459a9a">
87
+ <img src="https://img.shields.io/badge/Model-4d5eff?style=for-the-badge&logo=huggingface&logoColor=ffffff&labelColor" alt="Data">
88
+ </a>
89
+ </td>
90
+ <td style="padding: 0;">
91
+ <a href="https://github.com/zwhe99/DeepMath">
92
+ <img src="https://img.shields.io/badge/Code-000000?style=for-the-badge&logo=github&logoColor=white" alt="Code">
93
+ </a>
94
+ </td>
95
+ <td style="padding: 0;">
96
+ <a href="https://arxiv.org/abs/2504.11456">
97
+ <img src="https://img.shields.io/badge/arXiv-2504.11456-b31b1b.svg?style=for-the-badge" alt="arXiv">
98
+ </a>
99
+ </td>
100
+ </tr>
101
+ </table>
102
 
103
  <!-- Provide a quick summary of what the model is/does. -->
104
+ DeepMath-Zero-7B is created by finetuning Qwen/Qwen2.5-7B on DeepMath-103K dataset via RL.
105
 
106
+ ## 📖 Overview
107
 
108
+ **`DeepMath-103K`** is meticulously curated to push the boundaries of mathematical reasoning in language models. Key features include:
109
 
110
+ **1. Challenging Problems**: DeepMath-103K has a strong focus on difficult mathematical problems (primarily Levels 5-9), significantly raising the complexity bar compared to many existing open datasets.
111
 
112
+ <div align="center"> <img src="./assets/github-difficulty.png" width="90%"/>
113
 
114
+ <sub>Difficulty distribution comparison.</sub> </div>
115
 
116
+ **2. Broad Topical Diversity**: The dataset spans a wide spectrum of mathematical subjects, including Algebra, Calculus, Number Theory, Geometry, Probability, and Discrete Mathematics.
117
 
118
+ <div align="center"> <img src="./assets/github-domain.png" width="50%"/>
 
 
 
 
 
 
119
 
120
+ <sub>Hierarchical breakdown of mathematical topics covered in DeepMath-103K.</sub></div>
121
 
122
+ **4. Rigorous Decontamination**: Built from diverse sources, the dataset underwent meticulous decontamination against common benchmarks using semantic matching. This minimizes test set leakage and promotes fair model evaluation.
123
 
124
+ <div align="center"> <img src="./assets/github-contamination-case.png" width="80%"/>
 
 
125
 
126
+ <sub>Detected contamination examples. Subtle conceptual overlaps can also be identified.</sub> </div>
127
 
128
+ **5. Rich Data Format**: Each sample in `DeepMath-103K` is structured with rich information to support various research applications:
129
 
130
+ <div align="center"> <img src="./assets/github-data-sample.png" width="90%"/>
131
 
132
+ <sub>A data sample from DeepMath-103K.</sub> </div>
133
 
134
+ - **Question**: The mathematical problem statement.
135
+ - **Final Answer**: A reliably verifiable final answer, enabling robust rule-based reward functions for RL.
136
+ - **Difficulty**: A numerical score for difficulty-aware training or analysis.
137
+ - **Topic**: Hierarchical classification for topic-specific applications.
138
+ - **R1 Solutions**: Three distinct reasoning paths from DeepSeek-R1, valuable for supervised fine-tuning (SFT) or knowledge distillation.
139
 
140
+ ## 📊Main Results
141
 
142
+ `DeepMath-Zero-7B` and `DeepMath-1.5B` are trained on the `DeepMath-103K` dataset via RL. These models are initialized from `Qwen2.5-7B-Base` and `R1-Distill-Qwen-1.5B`, respectively.
143
 
 
144
 
145
+ | Model | MATH 500 | AMC23 | Olympiad Bench | Minerva Math | AIME24 | AIME25 |
146
+ | :----------------------: | :------: | :------: | :------------: | :----------: | :------: | :------: |
147
+ | Qwen2.5-7B-Base | 54.8 | 35.3 | 27.8 | 16.2 | 7.7 | 5.4 |
148
+ | Open-Reasoner-Zero-7B | 81.8 | 58.9 | 47.9 | 38.4 | 15.6 | 14.4 |
149
+ | Qwen-2.5-7B-SimpleRL-Zoo | 77.0 | 55.8 | 41.0 | 41.2 | 15.6 | 8.7 |
150
+ | DeepMath-Zero-7B | **85.5** | **64.7** | **51.0** | **45.3** | **20.4** | **17.5** |
151
 
152
+ | Model | MATH 500 | AMC23 | Olympiad Bench | Minerva Math | AIME24 | AIME25 |
153
+ | :---------------------: | :------: | :------: | :------------: | :----------: | :------: | :------: |
154
+ | R1-Distill-Qwen-1.5B | 84.7 | 72.0 | 53.1 | 36.6 | 29.4 | 24.8 |
155
+ | DeepScaleR-1.5B-Preview | 89.4 | 80.3 | 60.9 | 42.2 | **42.3** | 29.6 |
156
+ | Still-3-1.5B-Preview | 86.6 | 75.8 | 55.7 | 38.7 | 30.8 | 24.6 |
157
+ | DeepMath-1.5B | **89.9** | **82.3** | **61.8** | **42.5** | 37.3 | **30.8** |
158
 
159
+ ## 🙏 Acknowledgements
160
 
161
+ This work can not be done without the help of the following works:
162
 
163
+ - **[verl](https://github.com/volcengine/verl)**: A very fast reinforcement learning framework.
164
+ - **[Vivacem/MMIQC](https://huggingface.co/datasets/Vivacem/MMIQC)**: A mixture of question-response pairs extracted from Mathematics Stack Exchange pages.
165
+ - **[TIGER-Lab/WebInstructSub](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)**: Instruction data from MathStackExchange and ScienceStackExchange.
166
+ - **[AI-MO/NuminaMath-CoT](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT)**: Approximately 860k math problems.
167
 
168
+ ## 📚 Citation
169
+ ```bibtex
170
+ @article{deepmath,
171
+ title={DeepMath-103K: A Large-Scale, Challenging, Decontaminated, and Verifiable Mathematical Dataset for Advancing Reasoning},
172
+ author={He, Zhiwei and Liang, Tian and Xu, Jiahao and Liu, Qiuzhi and Chen, Xingyu and Wang, Yue and Song, Linfeng and Yu, Dian and Liang, Zhenwen and Wang, Wenxuan and Zhang, Zhuosheng and Wang, Rui and Tu, Zhaopeng and Mi, Haitao and Yu, Dong},
173
+ year={2025},
174
+ eprint={2504.11456},
175
+ archivePrefix={arXiv},
176
+ primaryClass={cs.CL},
177
+ url={https://arxiv.org/abs/2504.11456},
178
+ }
179
+ ```