metadata
license: bsd-3-clause-clear
language:
- en
pipeline_tag: image-to-image
tags:
- Real-ESRGAN
- SR
- Int8
Real-ESRGAN
This version of Real-ESRGAN has been converted to run on the Axera NPU using w8a8 quantization.
This model has been optimized with the following LoRA:
Compatible with Pulsar2 version: 3.4
Convert tools links:
For those who are interested in model conversion, you can try to export axmodel through
The repo of AXera Platform, which you can get the detial of guide
Support Platform
Chips | 64x64 -> 256x256 | 256x256 -> 1024x1024 |
---|---|---|
AX650 | 15 ms | 440 ms |
AX630C | 76 ms | 2030 ms |
How to use
Download all files from this repository to the device
(axcl) axera@raspberrypi:~/samples/realesrgan.axera $ tree -L 2
.
βββ ax630c
β βββ realesrgan-x4-256.axmodel
β βββ realesrgan-x4.axmodel
βββ ax650
β βββ realesrgan-x4-256.axmodel
β βββ realesrgan-x4.axmodel
βββ config.json
βββ main.py
βββ onnx
β βββ realesrgan-x4-256.onnx
β βββ realesrgan-x4.onnx
βββ output_test_256.jpg
βββ out_test-256.jpg
βββ test_256.jpeg
3 directories, 11 file
python env requirement
pyaxengine
https://github.com/AXERA-TECH/pyaxengine
wget https://github.com/AXERA-TECH/pyaxengine/releases/download/0.1.3rc0/axengine-0.1.3-py3-none-any.whl
pip install axengine-0.1.3-py3-none-any.whl
others
pip install argparse numpy opencv-python
Inference with AX630C Host, such as Module-LLM, LLM630 Compute Kit
root@ax630c:/mnt/qtang/realesrgan.axera# python3 main.py --input test_256.jpeg --output test_256_20e.jpeg --model ax630/realesrgan-x4-256.axmodel
[INFO] Available providers: ['AxEngineExecutionProvider']
[INFO] Using provider: AxEngineExecutionProvider
[INFO] Chip type: ChipType.MC20E
[INFO] VNPU type: VNPUType.DISABLED
[INFO] Engine version: 2.7.2a
[INFO] Model type: 1 (full core)
[INFO] Compiler version: 3.4 3dfd5692
input.1 [1, 256, 256, 3] uint8
1895 [1, 1024, 1024, 3] float32
Original Image Shape: (243, 243, 3)
Preprocessed Image Shape: (1, 256, 256, 3)
Inference Time: 2066.72 ms
Output Shape: (1, 1024, 1024, 3)
Final Output Image Shape: (1024, 1024, 3)
root@ax630c:/mnt/qtang/realesrgan.axera#
Inference with M.2 Accelerator card
What is M.2 Accelerator card?, Show this DEMO based on Raspberry PI 5.
(axcl) axera@raspberrypi:~/samples/realesrgan.axera $ python main.py --input test_256.jpeg --output output_test_256.jpg --model realesrgan-x4-256.axmodel
[INFO] Available providers: ['AXCLRTExecutionProvider']
[INFO] Using provider: AXCLRTExecutionProvider
[INFO] SOC Name: AX650N
[INFO] VNPU type: VNPUType.DISABLED
[INFO] Compiler version: 3.4 3dfd5692
input.1 [1, 256, 256, 3] uint8
<cdata 'char *' 0x262e54e0> [1, 1024, 1024, 3] float32
Original Image Shape: (243, 243, 3)
Preprocessed Image Shape: (1, 256, 256, 3)
Inference Time: 455.81 ms
Output Shape: (1, 1024, 1024, 3)
Final Output Image Shape: (1024, 1024, 3)
(axcl) axera@raspberrypi:~/samples/realesrgan.axera $