|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
# How to Run this Model |
|
基本的にhugging face modelとしてloadすればOK。 |
|
|
|
**elyza-tasks-100-TV_0.jsonl を事前に同じフォルダーに置いてください。** |
|
|
|
**HF_TOKENの入れ替えを忘れないでください** |
|
|
|
|
|
環境準備 |
|
|
|
``` |
|
!pip install -U bitsandbytes |
|
!pip install -U transformers |
|
!pip install -U accelerate |
|
!pip install -U datasets |
|
``` |
|
|
|
|
|
|
|
結果jsonlを作成ためのコード例 |
|
|
|
推論結果が llm-jp-3-13b-it-outputs.jsonl に作成される |
|
``` |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
) |
|
import torch |
|
from tqdm import tqdm |
|
import json |
|
|
|
HF_TOKEN = ADD YOUR OWN TOKEN |
|
model_name = "AlHfac/llm-jp-3-13b-it" |
|
|
|
# QLoRA config |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=False, |
|
) |
|
# Load model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
token = HF_TOKEN |
|
) |
|
|
|
# Load tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN) |
|
|
|
# Load Questions |
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
# Generate results using loaded model |
|
results = [] |
|
for data in tqdm(datasets): |
|
|
|
input = data["input"] |
|
|
|
prompt = f"""### 指示 |
|
{input} |
|
### 回答: |
|
""" |
|
|
|
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
tokenized_input, |
|
max_new_tokens=100, |
|
do_sample=False, |
|
repetition_penalty=1.2 |
|
)[0] |
|
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) |
|
|
|
results.append({"task_id": data["task_id"], "input": input, "output": output}) |
|
|
|
|
|
# Generate jsonl |
|
import re |
|
model_name = re.sub(".*/", "", model_name) |
|
with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters |
|
f.write('\n') |
|
|
|
``` |
|
|
|
`The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's attention_mask to obtain reliable results. Setting pad_token_id to eos_token_id:2 for open-end generation.` |
|
ようなlogを無視してもOK |
|
|
|
# Model Training Information |
|
|
|
- **Developed by:** AlHfac |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|