tbs17-MathBERT-Math-Classifier

This model is a fine-tuned version of tbs17/MathBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9505
  • Micro F1: 0.8437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Micro F1
1.2886 1.0 1083 0.8944 0.8051
0.8314 2.0 2166 0.8812 0.8182
0.6888 3.0 3249 0.8701 0.8411
0.598 4.0 4332 0.9151 0.8352
0.5407 5.0 5415 0.9424 0.8339
0.5081 6.0 6498 0.9387 0.8457
0.4908 7.0 7581 0.9565 0.8424
0.4857 8.0 8664 0.9505 0.8437

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AllanK24/tbs17-MathBERT-Math-Classifier

Base model

tbs17/MathBERT
Finetuned
(2)
this model