Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/tinyllama
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - e029f217fa002728_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e029f217fa002728_train_data.json
  type:
    field_input: overview
    field_instruction: raw_text
    field_output: clean_text
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/b44edac3-df02-44f0-a749-5b89fdf83692
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2036
micro_batch_size: 4
mlflow_experiment_name: /tmp/e029f217fa002728_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: f214cfe8-8866-498c-ad88-a995718d9d2d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f214cfe8-8866-498c-ad88-a995718d9d2d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

b44edac3-df02-44f0-a749-5b89fdf83692

This model is a fine-tuned version of unsloth/tinyllama on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1427

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 2036

Training results

Training Loss Epoch Step Validation Loss
4.4824 0.0009 1 4.7982
0.1726 0.0897 100 0.1894
0.2216 0.1794 200 0.1676
0.032 0.2690 300 0.1616
0.0271 0.3587 400 0.1539
0.3435 0.4484 500 0.1514
0.0376 0.5381 600 0.1493
0.1738 0.6277 700 0.1479
0.022 0.7174 800 0.1471
0.2307 0.8071 900 0.1466
0.0315 0.8968 1000 0.1450
0.1236 0.9864 1100 0.1442
0.1171 1.0761 1200 0.1444
0.037 1.1658 1300 0.1441
0.205 1.2555 1400 0.1438
0.0886 1.3451 1500 0.1434
0.3406 1.4348 1600 0.1431
0.1887 1.5245 1700 0.1430
0.032 1.6142 1800 0.1428
0.3551 1.7038 1900 0.1427
0.0924 1.7935 2000 0.1427

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/b44edac3-df02-44f0-a749-5b89fdf83692

Base model

unsloth/tinyllama
Adapter
(305)
this model