Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/tinyllama
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - e029f217fa002728_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e029f217fa002728_train_data.json
  type:
    field_input: overview
    field_instruction: raw_text
    field_output: clean_text
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/cb7b7f17-09e9-4fe1-a403-8cfcd08f1c23
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 8702
micro_batch_size: 2
mlflow_experiment_name: /tmp/e029f217fa002728_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: f214cfe8-8866-498c-ad88-a995718d9d2d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f214cfe8-8866-498c-ad88-a995718d9d2d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

cb7b7f17-09e9-4fe1-a403-8cfcd08f1c23

This model is a fine-tuned version of unsloth/tinyllama on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1239

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 8702

Training results

Training Loss Epoch Step Validation Loss
5.1078 0.0002 1 4.2512
0.0377 0.0897 400 0.1555
0.4174 0.1794 800 0.1444
0.0484 0.2690 1200 0.1452
0.0263 0.3587 1600 0.1334
0.891 0.4484 2000 0.1317
0.0199 0.5381 2400 0.1302
0.0252 0.6277 2800 0.1290
0.0114 0.7174 3200 0.1279
0.0236 0.8071 3600 0.1275
0.0526 0.8968 4000 0.1261
0.379 0.9864 4400 0.1254
0.014 1.0761 4800 0.1258
0.0125 1.1658 5200 0.1252
0.0377 1.2555 5600 0.1249
0.2576 1.3451 6000 0.1247
0.4384 1.4348 6400 0.1244
0.4103 1.5245 6800 0.1242
0.0122 1.6142 7200 0.1240
0.3834 1.7038 7600 0.1239
0.2488 1.7935 8000 0.1239
0.7307 1.8832 8400 0.1239

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/cb7b7f17-09e9-4fe1-a403-8cfcd08f1c23

Base model

unsloth/tinyllama
Adapter
(313)
this model