ResEncL-OpenMind-MAE / adaptation_plan.json
AnonRes's picture
Include README.md and add citation infos for architectures, methods, dataset and framework into the checkpoint
c225c00 verified
raw
history blame
4.55 kB
{
"architecture_plans": {
"arch_class_name": "ResEncL",
"arch_kwargs": null,
"arch_kwargs_requiring_import": null
},
"pretrain_plan": {
"dataset_name": "Dataset745_OpenNeuro_v2",
"plans_name": "nnsslPlans",
"original_median_spacing_after_transp": [
1,
1,
1
],
"image_reader_writer": "SimpleITKIO",
"transpose_forward": [
0,
1,
2
],
"transpose_backward": [
0,
1,
2
],
"configurations": {
"onemmiso": {
"data_identifier": "nnsslPlans_3d_fullres",
"preprocessor_name": "DefaultPreprocessor",
"spacing_style": "onemmiso",
"normalization_schemes": [
"ZScoreNormalization"
],
"use_mask_for_norm": [
false
],
"resampling_fn_data": "resample_data_or_seg_to_shape",
"resampling_fn_data_kwargs": {
"is_seg": false,
"order": 3,
"order_z": 0,
"force_separate_z": null
},
"resampling_fn_mask": "resample_data_or_seg_to_shape",
"resampling_fn_mask_kwargs": {
"is_seg": true,
"order": 1,
"order_z": 0,
"force_separate_z": null
},
"spacing": [
1,
1,
1
],
"patch_size": [
64,
64,
64
]
}
},
"experiment_planner_used": "FixedResEncUNetPlanner"
},
"pretrain_num_input_channels": 1,
"recommended_downstream_patchsize": [
160,
160,
160
],
"key_to_encoder": "encoder.stages",
"key_to_stem": "encoder.stem",
"keys_to_in_proj": [
"encoder.stem.convs.0.conv",
"encoder.stem.convs.0.all_modules.0"
],
"key_to_lpe": null,
"citations": [
{
"type": "Architecture",
"name": "ResEncL",
"bibtex_citations": [
"@inproceedings{isensee2024nnu,\n title={nnu-net revisited: A call for rigorous validation in 3d medical image segmentation},\n author={Isensee, Fabian and Wald, Tassilo and Ulrich, Constantin and Baumgartner, Michael and Roy, Saikat and Maier-Hein, Klaus and Jaeger, Paul F},\n booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},\n pages={488--498},\n year={2024},\n organization={Springer}\n }"
]
},
{
"type": "Pretraining Method",
"name": "Masked Auto Encoder",
"bibtex_citations": [
"@article{wald2024revisiting,\n title={Revisiting MAE pre-training for 3D medical image segmentation},\n author={Wald, Tassilo and Ulrich, Constantin and Lukyanenko, Stanislav and Goncharov, Andrei and Paderno, Alberto and Maerkisch, Leander and J{\"a}ger, Paul F and Maier-Hein, Klaus},\n journal={arXiv preprint arXiv:2410.23132},\n year={2024}\n}"
]
},
{
"type": "Pre-Training Dataset",
"name": "OpenMind",
"bibtex_citations": [
"@article{wald2024openmind,\n title={An OpenMind for 3D medical vision self-supervised learning},\n author={Wald, Tassilo and Ulrich, Constantin and Suprijadi, Jonathan and Ziegler, Sebastian and Nohel, Michal and Peretzke, Robin and K{\"o}hler, Gregor and Maier-Hein, Klaus H},\n journal={arXiv preprint arXiv:2412.17041},\n year={2024}\n }\n "
]
},
{
"type": "Framework",
"name": "nnssl",
"bibtex_citations": [
"@article{wald2024revisiting,\n title={Revisiting MAE pre-training for 3D medical image segmentation},\n author={Wald, Tassilo and Ulrich, Constantin and Lukyanenko, Stanislav and Goncharov, Andrei and Paderno, Alberto and Maerkisch, Leander and J{\"a}ger, Paul F and Maier-Hein, Klaus},\n journal={arXiv preprint arXiv:2410.23132},\n year={2024}\n}"
]
}
],
"trainer_name": "BaseMAETrainer_BS8"
}