AnonRes commited on
Commit
c225c00
·
verified ·
1 Parent(s): 1390c2a

Include README.md and add citation infos for architectures, methods, dataset and framework into the checkpoint

Browse files
Files changed (3) hide show
  1. README.md +52 -3
  2. adaptation_plan.json +33 -3
  3. checkpoint_final.pth +2 -2
README.md CHANGED
@@ -1,3 +1,52 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ datasets:
4
+ - AnonRes/OpenMind
5
+ pipeline_tag: image-feature-extraction
6
+ tags:
7
+ - medical
8
+ ---
9
+
10
+ # OpenMind Benchmark 3D SSL Models
11
+
12
+ > **Model from the paper**: [An OpenMind for 3D medical vision self-supervised learning](https://arxiv.org/abs/2412.17041)
13
+ > **Pre-training codebase used to create checkpoint**: [MIC-DKFZ/nnssl](https://github.com/MIC-DKFZ/nnssl)
14
+ > **Dataset**: [AnonRes/OpenMind](https://huggingface.co/datasets/AnonRes/OpenMind)
15
+ > **Downstream (segmentation) fine-tuning**: [TaWald/nnUNet](https://github.com/TaWald/nnUNet)
16
+
17
+ ---
18
+
19
+ ![OpenMind](https://huggingface.co/datasets/AnonRes/OpenMind/resolve/main/assets/OpenMindDataset.png)
20
+
21
+ ## 🔍 Overview
22
+
23
+ This repository hosts pre-trained checkpoints from the **OpenMind** benchmark:
24
+ 📄 **"An OpenMind for 3D medical vision self-supervised learning"**
25
+ ([arXiv:2412.17041](https://arxiv.org/abs/2412.17041)) — the first extensive benchmark study for **self-supervised learning (SSL)** on **3D medical imaging** data.
26
+
27
+ The models were pre-trained using various SSL methods on the [OpenMind Dataset](https://huggingface.co/datasets/AnonRes/OpenMind), a large-scale, standardized collection of public brain MRI datasets.
28
+
29
+ **These models are not recommended to be used as-is.** Instead we recommend using the downstream fine-tuning pipelines for **segmentation** and **classification**, available in the [adaptation repository](https://github.com/TaWald/nnUNet).
30
+ *While direct download is possible, we recommend using the auto-download of the respective fine-tuning repositories.*
31
+
32
+ ---
33
+
34
+ ## 🧠 Model Variants
35
+
36
+ We release SSL checkpoints for two backbone architectures:
37
+
38
+ - **ResEnc-L**: A CNN-based encoder [[link1](https://arxiv.org/abs/2410.23132), [link2](https://arxiv.org/abs/2404.09556)]
39
+ - **Primus-M**: A transformer-based encoder [[Primus paper](https://arxiv.org/abs/2503.01835)]
40
+
41
+ Each encoder has been pre-trained using the following SSL techniques:
42
+
43
+ | Method | Description |
44
+ |---------------|-------------|
45
+ | [Volume Contrastive (VoCo)](https://arxiv.org/abs/2402.17300) | Global contrastive learning in 3D volumes |
46
+ | [VolumeFusion (VF)](https://arxiv.org/abs/2306.16925) | Spatial fusion-based SSL |
47
+ | [Models Genesis (MG)](https://www.sciencedirect.com/science/article/pii/S1361841520302048) | Classic 3D self-reconstruction |
48
+ | [Masked Autoencoders (MAE)](https://openaccess.thecvf.com/content/CVPR2022/html/He_Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper) | Patch masking and reconstruction |
49
+ | [Spark 3D (S3D)](https://arxiv.org/abs/2410.23132) | 3D adaptation of Spark framework |
50
+ | [SimMIM](https://openaccess.thecvf.com/content/CVPR2022/html/Xie_SimMIM_A_Simple_Framework_for_Masked_Image_Modeling_CVPR_2022_paper.html) | Simple masked reconstruction |
51
+ | [SwinUNETR SSL](https://arxiv.org/abs/2111.14791) | Transformer-based pre-training |
52
+ | [SimCLR](https://arxiv.org/abs/2002.05709) | Contrastive learning baseline |
adaptation_plan.json CHANGED
@@ -54,9 +54,9 @@
54
  1
55
  ],
56
  "patch_size": [
57
- 160,
58
- 160,
59
- 160
60
  ]
61
  }
62
  },
@@ -75,5 +75,35 @@
75
  "encoder.stem.convs.0.all_modules.0"
76
  ],
77
  "key_to_lpe": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  "trainer_name": "BaseMAETrainer_BS8"
79
  }
 
54
  1
55
  ],
56
  "patch_size": [
57
+ 64,
58
+ 64,
59
+ 64
60
  ]
61
  }
62
  },
 
75
  "encoder.stem.convs.0.all_modules.0"
76
  ],
77
  "key_to_lpe": null,
78
+ "citations": [
79
+ {
80
+ "type": "Architecture",
81
+ "name": "ResEncL",
82
+ "bibtex_citations": [
83
+ "@inproceedings{isensee2024nnu,\n title={nnu-net revisited: A call for rigorous validation in 3d medical image segmentation},\n author={Isensee, Fabian and Wald, Tassilo and Ulrich, Constantin and Baumgartner, Michael and Roy, Saikat and Maier-Hein, Klaus and Jaeger, Paul F},\n booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},\n pages={488--498},\n year={2024},\n organization={Springer}\n }"
84
+ ]
85
+ },
86
+ {
87
+ "type": "Pretraining Method",
88
+ "name": "Masked Auto Encoder",
89
+ "bibtex_citations": [
90
+ "@article{wald2024revisiting,\n title={Revisiting MAE pre-training for 3D medical image segmentation},\n author={Wald, Tassilo and Ulrich, Constantin and Lukyanenko, Stanislav and Goncharov, Andrei and Paderno, Alberto and Maerkisch, Leander and J{\"a}ger, Paul F and Maier-Hein, Klaus},\n journal={arXiv preprint arXiv:2410.23132},\n year={2024}\n}"
91
+ ]
92
+ },
93
+ {
94
+ "type": "Pre-Training Dataset",
95
+ "name": "OpenMind",
96
+ "bibtex_citations": [
97
+ "@article{wald2024openmind,\n title={An OpenMind for 3D medical vision self-supervised learning},\n author={Wald, Tassilo and Ulrich, Constantin and Suprijadi, Jonathan and Ziegler, Sebastian and Nohel, Michal and Peretzke, Robin and K{\"o}hler, Gregor and Maier-Hein, Klaus H},\n journal={arXiv preprint arXiv:2412.17041},\n year={2024}\n }\n "
98
+ ]
99
+ },
100
+ {
101
+ "type": "Framework",
102
+ "name": "nnssl",
103
+ "bibtex_citations": [
104
+ "@article{wald2024revisiting,\n title={Revisiting MAE pre-training for 3D medical image segmentation},\n author={Wald, Tassilo and Ulrich, Constantin and Lukyanenko, Stanislav and Goncharov, Andrei and Paderno, Alberto and Maerkisch, Leander and J{\"a}ger, Paul F and Maier-Hein, Klaus},\n journal={arXiv preprint arXiv:2410.23132},\n year={2024}\n}"
105
+ ]
106
+ }
107
+ ],
108
  "trainer_name": "BaseMAETrainer_BS8"
109
  }
checkpoint_final.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5bd48c0fad8d97a16c2695c4607f28cf16339d59d77f973120e33877a9237ab3
3
- size 491196942
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaf4a965c2a3293c502d67013b555dff0bb56e3dfdb1b4c6fca7dcf61b281b95
3
+ size 491198734