Update README.md
Browse files
README.md
CHANGED
@@ -1,85 +1,85 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
4 |
-
|
5 |
-
# LongVA-7B-Qwen2-Audio
|
6 |
-
|
7 |
-
|
8 |
-
LongVA-7B-Qwen2-Audio is an extension of [LongVA-7B](https://github.com/EvolvingLMMs-Lab/LongVA), further trained using the [LLaVA-NeXT-Audio](https://huggingface.co/datasets/ColorfulAI/LLaVA-NeXT-Audio) dataset.
|
9 |
-
|
10 |
-
|
11 |
-
## Usage
|
12 |
-
|
13 |
-
*Please refer to [M4](https://github.com/patrick-tssn/M4) to install relvevant packages*
|
14 |
-
|
15 |
-
```python
|
16 |
-
|
17 |
-
import os
|
18 |
-
from PIL import Image
|
19 |
-
import numpy as np
|
20 |
-
import torchaudio
|
21 |
-
import torch
|
22 |
-
from decord import VideoReader, cpu
|
23 |
-
import whisper
|
24 |
-
# fix seed
|
25 |
-
torch.manual_seed(0)
|
26 |
-
|
27 |
-
from intersuit.model.builder import load_pretrained_model
|
28 |
-
from intersuit.mm_utils import tokenizer_image_speech_tokens, process_images
|
29 |
-
from intersuit.constants import IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX
|
30 |
-
|
31 |
-
import warnings
|
32 |
-
warnings.filterwarnings("ignore")
|
33 |
-
|
34 |
-
model_path = "ColorfulAI/LongVA-7B-Qwen2-Audio"
|
35 |
-
video_path = "local_demo/assets/water.mp4"
|
36 |
-
audio_path = "local_demo/wav/infer.wav"
|
37 |
-
max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :)
|
38 |
-
gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024}
|
39 |
-
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_qwen", device_map="cuda:0")
|
40 |
-
|
41 |
-
query = "Give a detailed caption of the video as if I am blind."
|
42 |
-
query = None # comment this to use ChatTTS to convert the query to audio
|
43 |
-
|
44 |
-
#video input
|
45 |
-
prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image><|im_end|>\n<|im_start|>user\n<speech>\n<|im_end|>\n<|im_start|>assistant\n"
|
46 |
-
input_ids = tokenizer_image_speech_tokens(prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
|
47 |
-
vr = VideoReader(video_path, ctx=cpu(0))
|
48 |
-
total_frame_num = len(vr)
|
49 |
-
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
|
50 |
-
frame_idx = uniform_sampled_frames.tolist()
|
51 |
-
frames = vr.get_batch(frame_idx).asnumpy()
|
52 |
-
video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.float16)
|
53 |
-
|
54 |
-
#audio input
|
55 |
-
# process speech for input question
|
56 |
-
if query is not None:
|
57 |
-
import ChatTTS
|
58 |
-
chat = ChatTTS.Chat()
|
59 |
-
chat.load(source='local', compile=True)
|
60 |
-
audio_path = "./local_demo/wav/" + "infer.wav"
|
61 |
-
if os.path.exists(audio_path): os.remove(audio_path) # refresh
|
62 |
-
if not os.path.exists(audio_path):
|
63 |
-
wav = chat.infer(query)
|
64 |
-
try:
|
65 |
-
torchaudio.save(audio_path, torch.from_numpy(wav).unsqueeze(0), 24000)
|
66 |
-
except:
|
67 |
-
torchaudio.save(audio_path, torch.from_numpy(wav), 24000)
|
68 |
-
print(f"Human: {query}")
|
69 |
-
|
70 |
-
else:
|
71 |
-
print("Human: <audio>")
|
72 |
-
|
73 |
-
speech = whisper.load_audio(audio_path)
|
74 |
-
speech = whisper.pad_or_trim(speech)
|
75 |
-
speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16)
|
76 |
-
speech_length = torch.LongTensor([speech.shape[0]]).to(model.device)
|
77 |
-
|
78 |
-
with torch.inference_mode():
|
79 |
-
output_ids = model.generate(input_ids, images=[video_tensor], modalities=["video"], speeches=speech.unsqueeze(0), speech_lengths=speech_length, **gen_kwargs)
|
80 |
-
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
81 |
-
print(f"Agent: {outputs}")
|
82 |
-
|
83 |
-
```
|
84 |
-
|
85 |
-
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
# LongVA-7B-Qwen2-Audio
|
6 |
+
|
7 |
+
|
8 |
+
LongVA-7B-Qwen2-Audio is an extension of [LongVA-7B](https://github.com/EvolvingLMMs-Lab/LongVA), further trained using the [LLaVA-NeXT-Audio](https://huggingface.co/datasets/ColorfulAI/LLaVA-NeXT-Audio) dataset for 0.4 epochs.
|
9 |
+
|
10 |
+
|
11 |
+
## Usage
|
12 |
+
|
13 |
+
*Please refer to [M4](https://github.com/patrick-tssn/M4) to install relvevant packages*
|
14 |
+
|
15 |
+
```python
|
16 |
+
|
17 |
+
import os
|
18 |
+
from PIL import Image
|
19 |
+
import numpy as np
|
20 |
+
import torchaudio
|
21 |
+
import torch
|
22 |
+
from decord import VideoReader, cpu
|
23 |
+
import whisper
|
24 |
+
# fix seed
|
25 |
+
torch.manual_seed(0)
|
26 |
+
|
27 |
+
from intersuit.model.builder import load_pretrained_model
|
28 |
+
from intersuit.mm_utils import tokenizer_image_speech_tokens, process_images
|
29 |
+
from intersuit.constants import IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX
|
30 |
+
|
31 |
+
import warnings
|
32 |
+
warnings.filterwarnings("ignore")
|
33 |
+
|
34 |
+
model_path = "ColorfulAI/LongVA-7B-Qwen2-Audio"
|
35 |
+
video_path = "local_demo/assets/water.mp4"
|
36 |
+
audio_path = "local_demo/wav/infer.wav"
|
37 |
+
max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :)
|
38 |
+
gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024}
|
39 |
+
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_qwen", device_map="cuda:0")
|
40 |
+
|
41 |
+
query = "Give a detailed caption of the video as if I am blind."
|
42 |
+
query = None # comment this to use ChatTTS to convert the query to audio
|
43 |
+
|
44 |
+
#video input
|
45 |
+
prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image><|im_end|>\n<|im_start|>user\n<speech>\n<|im_end|>\n<|im_start|>assistant\n"
|
46 |
+
input_ids = tokenizer_image_speech_tokens(prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
|
47 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
48 |
+
total_frame_num = len(vr)
|
49 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
|
50 |
+
frame_idx = uniform_sampled_frames.tolist()
|
51 |
+
frames = vr.get_batch(frame_idx).asnumpy()
|
52 |
+
video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.float16)
|
53 |
+
|
54 |
+
#audio input
|
55 |
+
# process speech for input question
|
56 |
+
if query is not None:
|
57 |
+
import ChatTTS
|
58 |
+
chat = ChatTTS.Chat()
|
59 |
+
chat.load(source='local', compile=True)
|
60 |
+
audio_path = "./local_demo/wav/" + "infer.wav"
|
61 |
+
if os.path.exists(audio_path): os.remove(audio_path) # refresh
|
62 |
+
if not os.path.exists(audio_path):
|
63 |
+
wav = chat.infer(query)
|
64 |
+
try:
|
65 |
+
torchaudio.save(audio_path, torch.from_numpy(wav).unsqueeze(0), 24000)
|
66 |
+
except:
|
67 |
+
torchaudio.save(audio_path, torch.from_numpy(wav), 24000)
|
68 |
+
print(f"Human: {query}")
|
69 |
+
|
70 |
+
else:
|
71 |
+
print("Human: <audio>")
|
72 |
+
|
73 |
+
speech = whisper.load_audio(audio_path)
|
74 |
+
speech = whisper.pad_or_trim(speech)
|
75 |
+
speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16)
|
76 |
+
speech_length = torch.LongTensor([speech.shape[0]]).to(model.device)
|
77 |
+
|
78 |
+
with torch.inference_mode():
|
79 |
+
output_ids = model.generate(input_ids, images=[video_tensor], modalities=["video"], speeches=speech.unsqueeze(0), speech_lengths=speech_length, **gen_kwargs)
|
80 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
81 |
+
print(f"Agent: {outputs}")
|
82 |
+
|
83 |
+
```
|
84 |
+
|
85 |
+
|