|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- google/flan-t5-small |
|
pipeline_tag: text2text-generation |
|
--- |
|
# dafilab/chat-title-generator |
|
|
|
Fine-tuned `flan-t5-small` model for generating short titles from chats. |
|
|
|
## Model Details |
|
|
|
- **Base model**: google/flan-t5-small |
|
- **Training examples**: 10,000 |
|
- **Epochs**: 2 |
|
- **Final training loss**: 0.778800 |
|
- **Train batch size per device**: 4 |
|
- **Total optimization steps**: 500 |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import T5ForConditionalGeneration, T5Tokenizer |
|
|
|
model = T5ForConditionalGeneration.from_pretrained("dafilab/chat-title-generator") |
|
tokenizer = T5Tokenizer.from_pretrained("dafilab/chat-title-generator", legacy=False) |
|
|
|
def generate_chat_title(text): |
|
input_text = "short title: " + text |
|
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512) |
|
outputs = model.generate( |
|
input_ids=inputs.input_ids, |
|
max_length=64, |
|
num_beams=4, |
|
early_stopping=True, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
text = """How can I access the GPU of my other computer remotely for ML training? |
|
To access your other computer's GPU remotely for machine learning (ML) training, |
|
you need to set up remote access to the machine and ensure that it can properly leverage the GPU for computations. |
|
There are several ways to do this, depending on your operating system and the tools you prefer to use.""" |
|
print(generate_chat_title(text)) |
|
|
|
``` |
|
|
|
## Output |
|
``` |
|
Remote Access for Machine Learning |
|
``` |