See axolotl config
axolotl version: 0.8.0.dev0
base_model: Dans-DiscountModels/Mistral-Nemo-Base-2407-ChatML-Mod
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code:
# wandb configuration
wandb_project: 12b-mn-dans-reasoning-test
wandb_watch:
wandb_run_id: V0.0.4-1-2 # V{Version}-{Run Number}-{Attempt Number}
wandb_log_model:
# push checkpoints to hub
hub_model_id: Dans-DiscountModels/12b-mn-dans-reasoning-test-5
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy: "every_save"
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true
# where to save the finished model to
output_dir: ./12b-mn-dans-reasoning-test
save_safetensors: true
# dataset settings (local or huggingface repo)
datasets:
- path: PocketDoc/Dans-Reasoningmaxx-NaturalReasoning
type: dan-chat-advanced
- path: PocketDoc/Dans-Reasoningmaxx-WebInstruct
type: dan-chat-advanced
- path: PocketDoc/Dans-Reasoningmaxx-GeneralReasoning
type: dan-chat-advanced
- path: PocketDoc/Dans-Benchmaxx-COT
type: dan-chat-advanced
- path: PocketDoc/Dans-Logicmaxx-SAT-AP
type: dan-chat-advanced
- path: PocketDoc/Dans-Assistantmaxx-Opus-Merge
type: dan-chat-advanced
# - path: PocketDoc/Dans-Assistantmaxx-sonnetorca-subset
# type: dan-chat-advanced
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
adapter:
lora_model_dir:
lora_r: 128
lora_alpha: 128
lora_dropout: 0.1
lora_target_linear: True
lora_target_modules:
lora_modules_to_save:
- embed_tokens
- lm_head
lora_fan_in_fan_out:
peft_use_rslora: true
dataset_prepared_path: ./12b-mn-dans-reasoning-test-data
val_set_size: 0.005
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
gradient_checkpointing: true
# gradient_checkpointing_kwargs:
# use_reentrant: false
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 2
optimizer: came_pytorch
lr_scheduler: rex
learning_rate: 0.0000015
cosine_min_lr_ratio: 0.1
weight_decay: 0.1
max_grad_norm: 0.1
train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: false
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 16
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 4
save_total_limit: 1
debug: false
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
special_tokens:
12b-mn-dans-reasoning-test-5
This model is a fine-tuned version of Dans-DiscountModels/Mistral-Nemo-Base-2407-ChatML-Mod on the PocketDoc/Dans-Reasoningmaxx-NaturalReasoning, the PocketDoc/Dans-Reasoningmaxx-WebInstruct, the PocketDoc/Dans-Reasoningmaxx-GeneralReasoning, the PocketDoc/Dans-Benchmaxx-COT, the PocketDoc/Dans-Logicmaxx-SAT-AP and the PocketDoc/Dans-Assistantmaxx-Opus-Merge datasets. It achieves the following results on the evaluation set:
- Loss: 0.5607
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 72
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7429 | 0.0014 | 1 | 0.7557 |
0.6704 | 0.0634 | 46 | 0.6654 |
0.632 | 0.1269 | 92 | 0.6255 |
0.6256 | 0.1903 | 138 | 0.6108 |
0.5898 | 0.2538 | 184 | 0.6022 |
0.6078 | 0.3172 | 230 | 0.5967 |
0.5585 | 0.3807 | 276 | 0.5925 |
0.609 | 0.4441 | 322 | 0.5887 |
0.6203 | 0.5076 | 368 | 0.5854 |
0.5651 | 0.5710 | 414 | 0.5825 |
0.5886 | 0.6345 | 460 | 0.5802 |
0.5479 | 0.6979 | 506 | 0.5783 |
0.5924 | 0.7614 | 552 | 0.5764 |
0.5515 | 0.8248 | 598 | 0.5745 |
0.5891 | 0.8883 | 644 | 0.5727 |
0.5757 | 0.9517 | 690 | 0.5712 |
0.5241 | 1.0152 | 736 | 0.5718 |
0.5303 | 1.0786 | 782 | 0.5723 |
0.5586 | 1.1421 | 828 | 0.5713 |
0.5087 | 1.2055 | 874 | 0.5702 |
0.5251 | 1.2690 | 920 | 0.5694 |
0.5336 | 1.3324 | 966 | 0.5689 |
0.4921 | 1.3959 | 1012 | 0.5689 |
0.5164 | 1.4593 | 1058 | 0.5670 |
0.5546 | 1.5228 | 1104 | 0.5665 |
0.49 | 1.5862 | 1150 | 0.5649 |
0.4836 | 1.6497 | 1196 | 0.5647 |
0.4768 | 1.7131 | 1242 | 0.5642 |
0.5207 | 1.7766 | 1288 | 0.5630 |
0.5127 | 1.8400 | 1334 | 0.5624 |
0.5111 | 1.9034 | 1380 | 0.5615 |
0.4927 | 1.9669 | 1426 | 0.5607 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.1
- Downloads last month
- 17
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support