|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: Qwen/QwQ-32B |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Mielikki/Erebus-87k |
|
- NewEden/Orion-Completion-Asstr-Stories-16K |
|
- NewEden/Orion-Completion-LIT |
|
model-index: |
|
- name: qvq-cum |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.8.0.dev0` |
|
```yaml |
|
base_model: Qwen/QwQ-32B |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_swiglu: true |
|
liger_fused_linear_cross_entropy: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: Mielikki/Erebus-87k |
|
type: completion |
|
field: body |
|
- path: NewEden/Orion-Completion-Asstr-Stories-16K |
|
type: completion |
|
field: content |
|
- path: NewEden/Orion-Completion-LIT |
|
type: completion |
|
field: text |
|
|
|
shuffle_merged_datasets: true |
|
dataset_prepared_path: prepared_data |
|
output_dir: ./qvq-cum |
|
|
|
sequence_len: 16384 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 128 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
lora_modules_to_save: |
|
- embed_tokens |
|
- lm_head |
|
|
|
wandb_project: qwq |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: Pretrain-pt1-v2-frfr |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 2 |
|
micro_batch_size: 2 |
|
num_epochs: 1 |
|
optimizer: paged_adamw_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 1e-5 |
|
max_grad_norm: 0.001 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 40 |
|
saves_per_epoch: 2 |
|
debug: |
|
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json |
|
weight_decay: 0.01 |
|
fsdp: |
|
fsdp_config: |
|
``` |
|
|
|
</details><br> |
|
|
|
# qvq-cum |
|
|
|
This model is a fine-tuned version of [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) on the Mielikki/Erebus-87k, the NewEden/Orion-Completion-Asstr-Stories-16K and the NewEden/Orion-Completion-LIT datasets. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 40 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.49.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |