See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/tinyllama
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- 68cb8e1c19ecaf0a_train_data.json
ds_type: json
format: custom
path: 68cb8e1c19ecaf0a_train_data.json
type:
field: null
field_input: null
field_instruction: prompt
field_output: response_a
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_sample_packing: false
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: FatCat87/taopanda-2_1a63cef3-a8eb-43e4-9e58-ab6c9ca06368
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
seed: 31876
sequence_len: 4096
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-2_1a63cef3-a8eb-43e4-9e58-ab6c9ca06368
wandb_project: subnet56
wandb_runid: taopanda-2_1a63cef3-a8eb-43e4-9e58-ab6c9ca06368
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
taopanda-2_1a63cef3-a8eb-43e4-9e58-ab6c9ca06368
This model is a fine-tuned version of unsloth/tinyllama on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4257
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 31876
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4045 | 0.0084 | 1 | 0.4087 |
0.3968 | 0.2510 | 30 | 0.4186 |
0.4001 | 0.5021 | 60 | 0.4176 |
0.4094 | 0.7531 | 90 | 0.4191 |
0.4024 | 1.0042 | 120 | 0.4255 |
0.4087 | 1.2385 | 150 | 0.4257 |
0.4288 | 1.4895 | 180 | 0.4256 |
0.4178 | 1.7406 | 210 | 0.4257 |
0.4069 | 1.9916 | 240 | 0.4257 |
0.4183 | 2.2259 | 270 | 0.4257 |
0.4297 | 2.4770 | 300 | 0.4257 |
0.4043 | 2.7280 | 330 | 0.4257 |
0.4144 | 2.9791 | 360 | 0.4257 |
0.4006 | 3.2134 | 390 | 0.4257 |
0.3987 | 3.4644 | 420 | 0.4257 |
0.4321 | 3.7155 | 450 | 0.4257 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for FatCat87/taopanda-2_1a63cef3-a8eb-43e4-9e58-ab6c9ca06368
Base model
unsloth/tinyllama