You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

SentenceTransformer

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset: - GreenNode/GreenNode-Table-Markdown-Retrieval
  • Language: Vietnamese
  • License: cc-by-4.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the πŸ€— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Evaluation

Table: Performance comparison of various models on GreenNodeTableRetrieval

Dataset: GreenNode/GreenNode-Table-Markdown-Retrieval

Model Name MAP@5 ↑ MRR@5 ↑ NDCG@5 ↑ Recall@5 ↑ Mean ↑
Multilingual Embedding models
me5_small 33.75 33.75 35.68 41.49 36.17
me5_large 38.16 38.16 40.27 46.62 40.80
M3-Embedding 36.52 36.52 38.60 44.84 39.12
OpenAI-embedding-v3 30.61 30.61 32.57 38.46 33.06
Vietnamese Embedding models (Prior Work)
halong-embedding 32.15 32.15 34.13 40.09 34.63
sup-SimCSE-VietNamese-phobert_base 10.90 10.90 12.03 15.41 12.31
vietnamese-bi-encoder 13.61 13.61 14.63 17.68 14.89
GreenNode-Embedding (Our Work)
M3-GN-VN 41.85 41.85 44.15 57.05 46.23
M3-GN-VN-Mixed 42.08 42.08 44.33 51.06 44.89

Table: Performance comparison of various models on ZacLegalTextRetrieval

Dataset: GreenNode/zalo-ai-legal-text-retrieval-vn

Model Name MAP@5 ↑ MRR@5 ↑ NDCG@5 ↑ Recall@5 ↑ Mean ↑
Multilingual Embedding models
me5_small 54.68 54.37 58.32 69.16 59.13
me5_large 60.14 59.62 64.17 76.02 64.99
M3-Embedding 69.34 68.96 73.70 86.68 74.67
OpenAI-embedding-v3 38.68 38.80 41.53 49.94 41.74
Vietnamese Embedding models (Prior Work)
halong-embedding 52.57 52.28 56.64 68.72 57.55
sup-SimCSE-VietNamese-phobert_base 25.15 25.07 27.81 35.79 28.46
vietnamese-bi-encoder 54.88 54.47 59.10 79.51 61.99
GreenNode-Embedding (Our Work)
M3-GN-VN 65.03 64.80 69.19 81.66 70.17
M3-GN-VN-Mixed 69.75 69.28 74.01 86.74 74.95

Table: Performance comparison of various models on VieQuADRetrieval

Dataset: taidng/UIT-ViQuAD2.0

Model Name MAP@5 ↑ MRR@5 ↑ NDCG@5 ↑ Recall@5 ↑ Mean ↑
Multilingual Embedding models
me5_small 40.42 69.21 50.05 50.71 52.60
me5_large 44.18 67.81 53.04 55.86 55.22
M3-Embedding 44.08 72.28 54.07 56.01 56.61
OpenAI-embedding-v3 32.39 53.97 40.48 43.02 42.47
Vietnamese Embedding models (Prior Work)
halong-embedding 39.42 62.31 48.63 52.73 50.77
sup-SimCSE-VietNamese-phobert_base 20.45 35.99 26.73 29.59 28.19
vietnamese-bi-encoder 31.89 54.62 40.26 42.53 42.33
GreenNode-Embedding (Our Work)
M3-GN-VN 42.85 71.98 52.90 54.25 55.50
M3-GN-VN-Mixed 44.20 72.64 54.30 56.30 56.86

Table: Performance comparison of various models on GreenNodeTableRetrieval (Hit Rate)

Model Name Hit Rate@1 ↑ Hit Rate@5 ↑ Hit Rate@10 ↑ Hit Rate@20 ↑
Multilingual Embedding models
me5_small 38.99 53.37 59.28 65.09
me5_large 43.99 59.74 65.74 71.59
bge-m3 42.15 57.00 63.05 68.96
OpenAI-embedding-v3 - - - -
Vietnamese Embedding models (Prior Work)
halong-embedding 37.22 52.49 58.57 64.64
sup-SimCSE-VietNamese-phobert_base 14.00 24.74 30.32 36.44
vietnamese-bi-encoder 16.89 25.94 30.50 35.70
GreenNode-Embedding (Our Work)
M3-GN-VN 48.31 64.60 70.83 76.46
M3-GN-VN-Mixed 47.94 64.24 70.43 76.14

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.3.1
  • Accelerate: 0.33.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Downloads last month
586
Safetensors
Model size
568M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train GreenNode/GreenNode-Embedding-Large-VN-V1

Collection including GreenNode/GreenNode-Embedding-Large-VN-V1