EdgeFace-Base / README.md
Idiap-Data's picture
Update README.md
b2a3eb8 verified
|
raw
history blame
6.78 kB
metadata
license: cc-by-nc-sa-4.0

EdgeFace-Base

We present EdgeFace- a lightweight and efficient face recognition network inspired by the hybrid architecture of EdgeNeXt. By effectively combining the strengths of both CNN and Transformer models, and a low rank linear layer, EdgeFace achieves excellent face recognition performance optimized for edge devices. The proposed EdgeFace network not only maintains low computational costs and compact storage, but also achieves high face recognition accuracy, making it suitable for deployment on edge devices. The proposed EdgeFace model achieved the top ranking among models with fewer than 2M parameters in the IJCB 2023 Efficient Face Recognition Competition. Extensive experiments on challenging benchmark face datasets demonstrate the effectiveness and efficiency of EdgeFace in comparison to state-of-the-art lightweight models and deep face recognition models. Our EdgeFace model with 1.77M parameters achieves state of the art results on LFW (99.73%), IJB-B (92.67%), and IJB-C (94.85%), outperforming other efficient models with larger computational complexities. The code to replicate the experiments will be made available publicly.

Overview

  • Training: EdgeFace-Base was trained on Webface260M dataset (12M and 4M subsets)
  • Parameters: 18.23M
  • Output structure: Batch of face images

Evaluation of EdgeFace

Edge Face

Model MPARAMS MFLOPs LFW (%) CA-LFW (%) CP-LFW (%) CFP-FP (%) AgeDB-30 (%) IJB-B (%) IJB-C (%)
VarGFaceNet 5.0 1022 99.85 95.15 88.55 98.50 98.15 92.9 94.7
ShuffleFaceNet 2× 4.5 1050 99.62 - - 97.56 97.28 - -
MixFaceNet-M 3.95 626.1 99.68 - - - 97.05 91.55 93.42
ShuffleMixFaceNet-M 3.95 626.1 99.60 - - - 96.98 91.47 91.47
MobileFaceNetV1 3.4 1100 99.4 94.47 87.17 95.8 96.4 92.0 93.9
ProxylessFaceNAS 3.2 900 99.2 92.55 84.17 94.7 94.4 87.1 89.7
MixFaceNet-S 3.07 451.7 99.6 - - - 96.63 90.17 92.30
ShuffleMixFaceNet-S 3.07 451.7 99.58 - - - 97.05 90.94 93.08
ShuffleFaceNet 1.5x 2.6 577.5 99.7 95.05 88.50 96.9 97.3 92.3 94.3
MobileFaceNet 2.0 933 99.7 95.2 89.22 96.9 97.6 92.8 94.7
PocketNetM-256 1.75 1099.15 99.58 95.63 90.03 95.66 97.17 90.74 92.70
PocketNetM-128 1.68 1099.02 99.65 95.67 90.00 95.07 96.78 90.63 92.63
MixFaceNet-XS 1.04 161.9 99.60 - - - 95.85 88.48 90.73
ShuffleMixFaceNet-XS 1.04 161.9 99.53 - - - 95.62 87.86 90.43
MobileFaceNets 0.99 439.8 99.55 - - - 96.07 - -
PocketNetS-256 0.99 587.24 99.66 95.50 88.93 93.34 96.35 89.31 91.33
PocketNetS-128 0.92 587.11 99.58 95.48 89.63 94.21 96.10 89.44 91.62
ShuffleFaceNet 0.5x 0.5 66.9 99.23 - - 92.59 93.22 - -
EdgeFace-S(γ = 0.5)(ours) 3.65 306.11 99.78 95.71 92.56 95.81 96.93 93.58 95.63
EdgeFace-XS(γ = 0.6)(ours) 1.77 154 99.73 95.28 91.82 94.37 96.00 92.67 94.8
Edgeface_XXS (ours) 1.24 94.72 99.57 ± 0.33 94.83 ± 0.98 90.27 ± 0.93 93.63 ± 0.99 94.92 ± 1.15 - -
Edgeface_Base (ours) 18.23 1398.83 99.83 ± 0.24 96.07 ± 1.03 93.75 ± 1.16 97.01 ± 0.94 97.60 ± 0.70 - -

Performance benchmarks of different variants of EdgeFace:

Model MPARAMS MFLOPs LFW (%) CALFW (%) CPLFW (%) CFP-FP (%) AgeDB30 (%)
edgeface_base 18.23 1398.83 99.83 ± 0.24 96.07 ± 1.03 93.75 ± 1.16 97.01 ± 0.94 97.60 ± 0.70
edgeface_s_gamma_05 3.65 306.12 99.78 ± 0.27 95.55 ± 1.05 92.48 ± 1.42 95.74 ± 1.09 97.03 ± 0.85
edgeface_xs_gamma_06 1.77 154.00 99.73 ± 0.35 95.28 ± 1.37 91.58 ± 1.42 94.71 ± 1.07 96.08 ± 0.95
edgeface_xxs 1.24 94.72 99.57 ± 0.33 94.83 ± 0.98 90.27 ± 0.93 93.63 ± 0.99 94.92 ± 1.15

Running EdgeFace-Base

Please check the project GitHub repository

License

EdgeFace is released under CC BY-NC-SA 4.0

Citation

If you find our work useful, please cite the following publication:

@article{edgeface,
  title={Edgeface: Efficient face recognition model for edge devices},
  author={George, Anjith and Ecabert, Christophe and Shahreza, Hatef Otroshi and Kotwal, Ketan and Marcel, Sebastien},
  journal={IEEE Transactions on Biometrics, Behavior, and Identity Science},
  year={2024}
}