lvkaokao's picture
update README.md.
c7c2381
|
raw
history blame
1.18 kB
---
license: cc-by-4.0
tags:
- int8
- Intel® Neural Compressor
- PostTrainingStatic
datasets:
- squad2
metrics:
- f1
---
# INT8 RoBERT base finetuned on Squad2
### Post-training static quantization
This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2).
The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104.
The linear modules **roberta.encoder.layer.7.output.dense**, **roberta.encoder.layer.8.output.dense**, **roberta.encoder.layer.9.output.dense**, fall back to fp32 for less than 1% relative accuracy loss.
### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |82.3122|82.9231|
| **Model size (MB)** |141|474|
### Load with Intel® Neural Compressor:
```python
from neural_compressor.utils.load_huggingface import OptimizedModel
int8_model = OptimizedModel.from_pretrained(
'Intel/roberta-base-squad2-int8-static',
)
```