|
--- |
|
language: en |
|
tags: |
|
- sagemaker |
|
- bert-base-uncased |
|
- text classification |
|
license: apache-2.0 |
|
datasets: |
|
- adecorpusv2 |
|
model-index: |
|
- name: BERT-ade_corpus |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: "ade_corpus_v2Ade_corpus_v2_classification" |
|
type: ade_corpus |
|
metrics: |
|
- name: Validation Accuracy |
|
type: accuracy |
|
value: 92.98 |
|
- name: Validation F1 |
|
type: f1 |
|
value: 82.73 |
|
|
|
--- |
|
|
|
## bert-base-uncased |
|
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. |
|
|
|
- Problem type: Text Classification(adverse drug effects detection). |
|
|
|
## Hyperparameters |
|
```json |
|
{ |
|
"do_eval": true, |
|
"do_train": true, |
|
"fp16": true, |
|
"load_best_model_at_end": true, |
|
"model_name": "bert-base-uncased", |
|
"num_train_epochs": 10, |
|
"per_device_eval_batch_size": 16, |
|
"per_device_train_batch_size": 16, |
|
"learning_rate":5e-5 |
|
|
|
} |
|
``` |
|
## Validation Metrics |
|
| key | value | |
|
| --- | ----- | |
|
| eval_accuracy | 0.9298021697511167 | |
|
| eval_auc | 0.8902672664394546 | |
|
| eval_f1 | 0.827315541601256 | |
|
| eval_loss | 0.17835010588169098 | |
|
| eval_recall | 0.8234375 | |
|
| eval_precision | 0.831230283911672 | |
|
|
|
""" |