DistilBERT Fine-Tuned on Yahoo Answers Topics

This is a fine-tuned DistilBERT model for topic classification on the Yahoo Answers Topics dataset. It classifies questions into one of 10 predefined categories like "Science & Mathematics", "Health", "Business & Finance", etc.

🧠 Model Details

  • Base model: distilbert-base-uncased
  • Task: Multi-class Text Classification (10 classes)
  • Dataset: Yahoo Answers Topics
  • Training samples: 50,000 (subset)
  • Evaluation samples: 5,000 (subset)
  • Metrics: Accuracy

πŸ§ͺ How to Use

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("Koushim/distilbert-yahoo-answers")
model = AutoModelForSequenceClassification.from_pretrained("Koushim/distilbert-yahoo-answers")

text = "How do I improve my math skills for competitive exams?"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)

predicted_class = outputs.logits.argmax(dim=1).item()
print("Predicted class:", predicted_class)

πŸ“Š Classes (Labels)

  1. Society & Culture
  2. Science & Mathematics
  3. Health
  4. Education & Reference
  5. Computers & Internet
  6. Sports
  7. Business & Finance
  8. Entertainment & Music
  9. Family & Relationships
  10. Politics & Government

πŸ“¦ Training Details

  • Optimizer: AdamW
  • Learning rate: 2e-5
  • Batch size: 16 (train), 32 (eval)
  • Epochs: 3
  • Weight decay: 0.01
  • Framework: PyTorch + πŸ€— Transformers

πŸ“ Repository Structure

  • config.json – Model config
  • pytorch_model.bin – Trained model weights
  • tokenizer.json, vocab.txt – Tokenizer files

✍️ Author

  • Hugging Face Hub: Koushim
  • Model trained using transformers.Trainer API

πŸ“„ License

Apache 2.0


Downloads last month
90
Safetensors
Model size
67M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train Koushim/distilbert-yahoo-answers-topic-classifier

Evaluation results