openvino-ci's picture
Upload folder using huggingface_hub
91535f1 verified
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-14B-Instruct/blob/main/LICENSE
base_model:
- Qwen/Qwen2.5-14B-Instruct
base_model_relation: quantized
---
# Qwen2.5-14B-Instruct-int4-ov
* Model creator: [Qwen](https://huggingface.co/Qwen)
* Original model: [Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)
## Description
This is [Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
## Quantization Parameters
Weight compression was performed using `nncf.compress_weights` with the following parameters:
* mode: **INT4_ASYM**
* ratio: **1**
* group_size: **128**
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html).
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2025.1.0 and higher
* Optimum Intel 1.24.0 and higher
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
model_id = "OpenVINO/qwen2.5-14b-instruct-int4-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html).
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
1. Install packages required for using OpenVINO GenAI.
```
pip install openvino-genai huggingface_hub
```
2. Download model from HuggingFace Hub
```
import huggingface_hub as hf_hub
model_id = "OpenVINO/qwen2.5-14b-instruct-int4-ov"
model_path = "qwen2.5-14b-instruct-int4-ov"
hf_hub.snapshot_download(model_id, local_dir=model_path)
```
3. Run model inference:
```
import openvino_genai as ov_genai
device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
print(pipe.generate("What is OpenVINO?", max_length=200))
```
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
You can find more detaild usage examples in OpenVINO Notebooks:
- [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM)
- [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation)
- [Convert models from ModelScope to OpenVINO](https://openvinotoolkit.github.io/openvino_notebooks/?search=Convert+models+from+ModelScope+to+OpenVINO)
## Limitations
Check the original [model card](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) for limitations.
## Legal information
The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct/blob/main/LICENSE) license. More details can be found in [Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.