Layoutv3test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9405
  • F1: 0.7563
  • Recall: 0.6959
  • Precision: 0.8281
  • Pred Bestellnummer: 146
  • Percentage Pred Act Bestellnummer: 1.0210
  • Pred Kundennr.: 57
  • Percentage Pred Act Kundennr.: 1.1875
  • Pred Bezug 1: 35
  • Percentage Pred Act Bezug 1: 2.5
  • Pred Modell 1: 114
  • Percentage Pred Act Modell 1: 1.1515
  • Pred Menge1: 74
  • Percentage Pred Act Menge1: 3.5238
  • Pred Möbelhaus: 93
  • Percentage Pred Act Möbelhaus: 1.0220
  • Pred Termin kundenwunsch - kw: 30
  • Percentage Pred Act Termin kundenwunsch - kw: 0.9375
  • Pred Kommission: 60
  • Percentage Pred Act Kommission: 1.0345
  • Pred Holz 1: 14
  • Percentage Pred Act Holz 1: 0.7368
  • Pred Modell 2: 57
  • Percentage Pred Act Modell 2: 0.9194
  • Pred Zusatz 1: 11
  • Percentage Pred Act Zusatz 1: 0.7857
  • Pred Holz 2: 39
  • Percentage Pred Act Holz 2: 1.8571
  • Pred Modell 3: 72
  • Percentage Pred Act Modell 3: 1.0909
  • Pred Var-ausf 1: 6
  • Percentage Pred Act Var-ausf 1: 0.75
  • Pred Menge3: 1
  • Percentage Pred Act Menge3: 0.0455
  • Act Bestellnummer: 143
  • Act Kundennr.: 48
  • Act Bezug 1: 14
  • Act Modell 1: 99
  • Act Menge1: 21
  • Act Menge4: 10
  • Act Möbelhaus: 91
  • Act Bezug 2: 13
  • Act Zusatz 2: 1
  • Act Termin kundenwunsch - kw: 32
  • Act Kommission: 58
  • Act Holz 1: 19
  • Act Menge3: 22
  • Act Modell 2: 62
  • Act Modell 3: 66
  • Act Modell 4: 6
  • Act Bezug 4: 7
  • Act Zusatz 3: 1
  • Act Holz 2: 21
  • Act Menge2: 18
  • Act Bezug 3: 4
  • Act Var-ausf 1: 8
  • Act Holz 3: 5
  • Act Zusatz 1: 14
  • Act Var-ausf. 2: 7
  • Act Var-ausf. 3: 4
  • Act Pv 3: 1
  • Act Holz 4: 1
  • Act Var-ausf. 5: 1
  • Act Modell 5: 5
  • Act La-anschrift: 6
  • Act Menge5: 1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
71
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for PeanutCoding/Layoutv3test

Finetuned
(274)
this model