alexmarques's picture
Create README.md
1c842a5 verified
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-30B-A3B
tags:
- neuralmagic
- redhat
- llmcompressor
- quantized
- INT4
---
# Qwen3-30B-A3B-quantized.w4a16
## Model Overview
- **Model Architecture:** Qwen3ForCausalLM
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT4
- **Intended Use Cases:**
- Reasoning.
- Function calling.
- Subject matter experts via fine-tuning.
- Multilingual instruction following.
- Translation.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- **Release Date:** 05/05/2025
- **Version:** 1.0
- **Model Developers:** RedHat (Neural Magic)
### Model Optimizations
This model was obtained by quantizing the weights of [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) to INT4 data type.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights of the linear operators within transformers blocks are quantized.
Weights are quantized using a symmetric per-group scheme, with group size 128.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Qwen3-30B-A3B-quantized.w4a16"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)
messages = [
{"role": "user", "content": prompt}
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
<details>
<summary>Creation details</summary>
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
```python
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model
model_stub = "Qwen/Qwen3-30B-A3B"
model_name = model_stub.split("/")[-1]
num_samples = 1024
max_seq_len = 8192
model = AutoModelForCausalLM.from_pretrained(model_stub)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.map(preprocess_fn)
# Configure the quantization algorithm and scheme
recipe = GPTQModifier(
ignore: ["lm_head", "re:.*gate$"]
sequential_targets=["Qwen3DecoderLayer"],
targets="Linear",
scheme="W4A16",
dampening_frac=0.01,
)
# Apply quantization
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w4a16"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
```
</details>
## Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), and on reasoning tasks using [lighteval](https://github.com/neuralmagic/lighteval/tree/reasoning).
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
<details>
<summary>Evaluation details</summary>
**lm-evaluation-harness**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks openllm \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks mgsm \
--apply_chat_template\
--batch_size auto
```
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks leaderboard \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**lighteval**
lighteval_model_arguments.yaml
```yaml
model_parameters:
model_name: RedHatAI/Qwen3-30B-A3B-quantized.w4a16
dtype: auto
gpu_memory_utilization: 0.9
max_model_length: 40960
generation_parameters:
temperature: 0.6
top_k: 20
min_p: 0.0
top_p: 0.95
max_new_tokens: 32768
```
```
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|aime24|0|0 \
--use_chat_template = true
```
```
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|aime25|0|0 \
--use_chat_template = true
```
```
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|math_500|0|0 \
--use_chat_template = true
```
```
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|gpqa:diamond|0|0 \
--use_chat_template = true
```
```
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks extended|lcb:codegeneration \
--use_chat_template = true
```
</details>
### Accuracy
<table>
<tr>
<th>Category
</th>
<th>Benchmark
</th>
<th>Qwen3-30B-A3B
</th>
<th>Qwen3-30B-A3B-quantized.w4a16<br>(this model)
</th>
<th>Recovery
</th>
</tr>
<tr>
<td rowspan="7" ><strong>OpenLLM v1</strong>
</td>
<td>MMLU (5-shot)
</td>
<td>77.67
</td>
<td>76.11
</td>
<td>98.00%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>63.40
</td>
<td>62.97
</td>
<td>99.3%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>87.26
</td>
<td>86.66
</td>
<td>99.3%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>54.33
</td>
<td>54.76
</td>
<td>100.8%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>66.77
</td>
<td>64.33
</td>
<td>96.3%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot, mc2)
</td>
<td>56.27
</td>
<td>54.76
</td>
<td>97.3%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>67.62</strong>
</td>
<td><strong>66.60</strong>
</td>
<td><strong>98.5%</strong>
</td>
</tr>
<tr>
<td rowspan="7" ><strong>OpenLLM v2</strong>
</td>
<td>MMLU-Pro (5-shot)
</td>
<td>47.45
</td>
<td>45.38
</td>
<td>95.6%
</td>
</tr>
<tr>
<td>IFEval (0-shot)
</td>
<td>86.26
</td>
<td>84.86
</td>
<td>98.4%
</td>
</tr>
<tr>
<td>BBH (3-shot)
</td>
<td>34.81
</td>
<td>28.12
</td>
<td>80.8%
</td>
</tr>
<tr>
<td>Math-lvl-5 (4-shot)
</td>
<td>52.14
</td>
<td>56.99
</td>
<td>109.3%
</td>
</tr>
<tr>
<td>GPQA (0-shot)
</td>
<td>0.31
</td>
<td>0.60
</td>
<td>---
</td>
</tr>
<tr>
<td>MuSR (0-shot)
</td>
<td>8.09
</td>
<td>9.05
</td>
<td>---
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>38.18</strong>
</td>
<td><strong>37.50</strong>
</td>
<td><strong>98.2%</strong>
</td>
</tr>
<tr>
<td><strong>Multilingual</strong>
</td>
<td>MGSM (0-shot)
</td>
<td>32.27
</td>
<td>33,890
</td>
<td>104.8%
</td>
</tr>
<tr>
<td rowspan="6" ><strong>Reasoning<br>(generation)</strong>
</td>
<td>AIME 2024
</td>
<td>78.33
</td>
<td>78.54
</td>
<td>100.3%
</td>
</tr>
<tr>
<td>AIME 2025
</td>
<td>71.46
</td>
<td>70.31
</td>
<td>98.4%
</td>
</tr>
<tr>
<td>GPQA diamond
</td>
<td>62.63
</td>
<td>62.12
</td>
<td>99.2%
</td>
</tr>
<tr>
<td>Math-lvl-5
</td>
<td>97.60
</td>
<td>97.20
</td>
<td>99.6%
</td>
</tr>
<tr>
<td>LiveCodeBench
</td>
<td>60.66
</td>
<td>58.75
</td>
<td>96.9%
</td>
</tr>
</table>