|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
pipeline_tag: text-generation |
|
base_model: |
|
- Qwen/Qwen3-30B-A3B |
|
tags: |
|
- neuralmagic |
|
- redhat |
|
- llmcompressor |
|
- quantized |
|
- INT4 |
|
--- |
|
|
|
# Qwen3-30B-A3B-quantized.w4a16 |
|
|
|
## Model Overview |
|
- **Model Architecture:** Qwen3ForCausalLM |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** INT4 |
|
- **Intended Use Cases:** |
|
- Reasoning. |
|
- Function calling. |
|
- Subject matter experts via fine-tuning. |
|
- Multilingual instruction following. |
|
- Translation. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). |
|
- **Release Date:** 05/05/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** RedHat (Neural Magic) |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) to INT4 data type. |
|
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. |
|
|
|
Only the weights of the linear operators within transformers blocks are quantized. |
|
Weights are quantized using a symmetric per-group scheme, with group size 128. |
|
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. |
|
|
|
|
|
## Deployment |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "RedHatAI/Qwen3-30B-A3B-quantized.w4a16" |
|
number_gpus = 1 |
|
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256) |
|
|
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}] |
|
|
|
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
llm = LLM(model=model_id, tensor_parallel_size=number_gpus) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
<details> |
|
<summary>Creation details</summary> |
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
|
|
```python |
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
from llmcompressor.transformers import oneshot |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load model |
|
model_stub = "Qwen/Qwen3-30B-A3B" |
|
model_name = model_stub.split("/")[-1] |
|
|
|
num_samples = 1024 |
|
max_seq_len = 8192 |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_stub) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_stub) |
|
|
|
def preprocess_fn(example): |
|
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} |
|
|
|
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") |
|
ds = ds.map(preprocess_fn) |
|
|
|
# Configure the quantization algorithm and scheme |
|
recipe = GPTQModifier( |
|
ignore: ["lm_head", "re:.*gate$"] |
|
sequential_targets=["Qwen3DecoderLayer"], |
|
targets="Linear", |
|
scheme="W4A16", |
|
dampening_frac=0.01, |
|
) |
|
|
|
# Apply quantization |
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=max_seq_len, |
|
num_calibration_samples=num_samples, |
|
) |
|
|
|
# Save to disk in compressed-tensors format |
|
save_path = model_name + "-quantized.w4a16" |
|
model.save_pretrained(save_path) |
|
tokenizer.save_pretrained(save_path) |
|
print(f"Model and tokenizer saved to: {save_path}") |
|
``` |
|
</details> |
|
|
|
|
|
|
|
## Evaluation |
|
|
|
The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), and on reasoning tasks using [lighteval](https://github.com/neuralmagic/lighteval/tree/reasoning). |
|
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations. |
|
|
|
<details> |
|
<summary>Evaluation details</summary> |
|
|
|
**lm-evaluation-harness** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \ |
|
--tasks openllm \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \ |
|
--tasks mgsm \ |
|
--apply_chat_template\ |
|
--batch_size auto |
|
``` |
|
|
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \ |
|
--tasks leaderboard \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**lighteval** |
|
|
|
lighteval_model_arguments.yaml |
|
```yaml |
|
model_parameters: |
|
model_name: RedHatAI/Qwen3-30B-A3B-quantized.w4a16 |
|
dtype: auto |
|
gpu_memory_utilization: 0.9 |
|
max_model_length: 40960 |
|
generation_parameters: |
|
temperature: 0.6 |
|
top_k: 20 |
|
min_p: 0.0 |
|
top_p: 0.95 |
|
max_new_tokens: 32768 |
|
``` |
|
|
|
``` |
|
lighteval vllm \ |
|
--model_args lighteval_model_arguments.yaml \ |
|
--tasks lighteval|aime24|0|0 \ |
|
--use_chat_template = true |
|
``` |
|
|
|
``` |
|
lighteval vllm \ |
|
--model_args lighteval_model_arguments.yaml \ |
|
--tasks lighteval|aime25|0|0 \ |
|
--use_chat_template = true |
|
``` |
|
|
|
``` |
|
lighteval vllm \ |
|
--model_args lighteval_model_arguments.yaml \ |
|
--tasks lighteval|math_500|0|0 \ |
|
--use_chat_template = true |
|
``` |
|
|
|
``` |
|
lighteval vllm \ |
|
--model_args lighteval_model_arguments.yaml \ |
|
--tasks lighteval|gpqa:diamond|0|0 \ |
|
--use_chat_template = true |
|
``` |
|
|
|
``` |
|
lighteval vllm \ |
|
--model_args lighteval_model_arguments.yaml \ |
|
--tasks extended|lcb:codegeneration \ |
|
--use_chat_template = true |
|
``` |
|
|
|
</details> |
|
|
|
### Accuracy |
|
|
|
<table> |
|
<tr> |
|
<th>Category |
|
</th> |
|
<th>Benchmark |
|
</th> |
|
<th>Qwen3-30B-A3B |
|
</th> |
|
<th>Qwen3-30B-A3B-quantized.w4a16<br>(this model) |
|
</th> |
|
<th>Recovery |
|
</th> |
|
</tr> |
|
<tr> |
|
<td rowspan="7" ><strong>OpenLLM v1</strong> |
|
</td> |
|
<td>MMLU (5-shot) |
|
</td> |
|
<td>77.67 |
|
</td> |
|
<td>76.11 |
|
</td> |
|
<td>98.00% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ARC Challenge (25-shot) |
|
</td> |
|
<td>63.40 |
|
</td> |
|
<td>62.97 |
|
</td> |
|
<td>99.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GSM-8K (5-shot, strict-match) |
|
</td> |
|
<td>87.26 |
|
</td> |
|
<td>86.66 |
|
</td> |
|
<td>99.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Hellaswag (10-shot) |
|
</td> |
|
<td>54.33 |
|
</td> |
|
<td>54.76 |
|
</td> |
|
<td>100.8% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande (5-shot) |
|
</td> |
|
<td>66.77 |
|
</td> |
|
<td>64.33 |
|
</td> |
|
<td>96.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TruthfulQA (0-shot, mc2) |
|
</td> |
|
<td>56.27 |
|
</td> |
|
<td>54.76 |
|
</td> |
|
<td>97.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>67.62</strong> |
|
</td> |
|
<td><strong>66.60</strong> |
|
</td> |
|
<td><strong>98.5%</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="7" ><strong>OpenLLM v2</strong> |
|
</td> |
|
<td>MMLU-Pro (5-shot) |
|
</td> |
|
<td>47.45 |
|
</td> |
|
<td>45.38 |
|
</td> |
|
<td>95.6% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>IFEval (0-shot) |
|
</td> |
|
<td>86.26 |
|
</td> |
|
<td>84.86 |
|
</td> |
|
<td>98.4% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>BBH (3-shot) |
|
</td> |
|
<td>34.81 |
|
</td> |
|
<td>28.12 |
|
</td> |
|
<td>80.8% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Math-lvl-5 (4-shot) |
|
</td> |
|
<td>52.14 |
|
</td> |
|
<td>56.99 |
|
</td> |
|
<td>109.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GPQA (0-shot) |
|
</td> |
|
<td>0.31 |
|
</td> |
|
<td>0.60 |
|
</td> |
|
<td>--- |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MuSR (0-shot) |
|
</td> |
|
<td>8.09 |
|
</td> |
|
<td>9.05 |
|
</td> |
|
<td>--- |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>38.18</strong> |
|
</td> |
|
<td><strong>37.50</strong> |
|
</td> |
|
<td><strong>98.2%</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Multilingual</strong> |
|
</td> |
|
<td>MGSM (0-shot) |
|
</td> |
|
<td>32.27 |
|
</td> |
|
<td>33,890 |
|
</td> |
|
<td>104.8% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="6" ><strong>Reasoning<br>(generation)</strong> |
|
</td> |
|
<td>AIME 2024 |
|
</td> |
|
<td>78.33 |
|
</td> |
|
<td>78.54 |
|
</td> |
|
<td>100.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>AIME 2025 |
|
</td> |
|
<td>71.46 |
|
</td> |
|
<td>70.31 |
|
</td> |
|
<td>98.4% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GPQA diamond |
|
</td> |
|
<td>62.63 |
|
</td> |
|
<td>62.12 |
|
</td> |
|
<td>99.2% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Math-lvl-5 |
|
</td> |
|
<td>97.60 |
|
</td> |
|
<td>97.20 |
|
</td> |
|
<td>99.6% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>LiveCodeBench |
|
</td> |
|
<td>60.66 |
|
</td> |
|
<td>58.75 |
|
</td> |
|
<td>96.9% |
|
</td> |
|
</tr> |
|
</table> |