Gemma-3 Quantized
Collection
12 items
•
Updated
Quantized version of google/gemma-3-1b-it.
This model was obtained by quantizing the weights of google/gemma-3-1b-it to INT8 data type, ready for inference with vLLM >= 0.8.0.
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
model="RedHatAI/gemma-3-1b-it-quantized.w8a8",
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=2,
)
# prepare inputs
question = "What is the content of this image?"
inputs = {
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
"multi_modal_data": {
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
},
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
This model was created with llm-compressor by running the code snippet below:
import base64
from io import BytesIO
import torch
from datasets import load_dataset
from transformers import AutoProcessor, Gemma3ForCausalLM
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
# Load model.
model_id = "google/gemma-3-1b-it"
model = Gemma3ForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="auto",
)
processor = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
# Oneshot arguments
DATASET_ID = "neuralmagic/calibration"
DATASET_SPLIT = {"LLM": "train[:512]"}
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42)
dampening_frac=0.01
def data_collator(batch):
assert len(batch) == 1, "Only batch size of 1 is supported for calibration"
item = batch[0]
collated = {}
import torch
for key, value in item.items():
if isinstance(value, torch.Tensor):
collated[key] = value.unsqueeze(0)
elif isinstance(value, list) and isinstance(value[0][0], int):
# Handle tokenized inputs like input_ids, attention_mask
collated[key] = torch.tensor(value)
elif isinstance(value, list) and isinstance(value[0][0], float):
# Handle possible float sequences
collated[key] = torch.tensor(value)
elif isinstance(value, list) and isinstance(value[0][0], torch.Tensor):
# Handle batched image data (e.g., pixel_values as [C, H, W])
collated[key] = torch.stack(value) # -> [1, C, H, W]
elif isinstance(value, torch.Tensor):
collated[key] = value
else:
print(f"[WARN] Unrecognized type in collator for key={key}, type={type(value)}")
return collated
# Recipe
recipe = [
GPTQModifier(
targets="Linear",
ignore=["re:.*lm_head.*", "re:.*embed_tokens.*", "re:vision_tower.*", "re:multi_modal_projector.*"],
sequential_update=True,
sequential_targets=["Gemma3DecoderLayer"],
dampening_frac=dampening_frac,
)
]
SAVE_DIR=f"{model_id.split('/')[1]}-quantized.w8a8"
# Perform oneshot
oneshot(
model=model,
tokenizer=model_id,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
trust_remote_code_model=True,
data_collator=data_collator,
output_dir=SAVE_DIR
)
The model was evaluated using lm_evaluation_harness for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
--tasks openllm \
--batch_size auto
Category | Metric | google/gemma-3-1b-it | RedHatAI/gemma-3-1b-it-quantized.w8a8 | Recovery (%) | |
---|---|---|---|---|---|
OpenLLM V1 | ARC Challenge | 36.86% | 36.43% | 98.84% | |
GSM8K | 25.17% | 24.87% | 98.80% | ||
Hellaswag | 56.03% | 55.62% | 99.25% | ||
MMLU | 39.99% | 39.35% | 98.38% | ||
Truthfulqa (mc2) | 38.54% | 38.22% | 99.17% | ||
Winogrande | 58.88% | 58.96% | 100.13% | ||
Average Score | 42.58% | 42.24% | 99.20% |