Gemma-3 Quantized
Collection
12 items
•
Updated
Quantized version of google/gemma-3-27b-it.
This model was obtained by quantizing the weights of google/gemma-3-27b-it to FP8 data type, ready for inference with vLLM >= 0.5.2.
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from transformers import AutoProcessor
# Define model name once
model_name = "RedHatAI/gemma-3-27b-it-FP8-dynamic"
# Load image and processor
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
# Build multimodal prompt
chat = [
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]},
{"role": "assistant", "content": []}
]
prompt = processor.apply_chat_template(chat, add_generation_prompt=True)
# Initialize model
llm = LLM(model=model_name, trust_remote_code=True)
# Run inference
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}}
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
# Display result
print("RESPONSE:", outputs[0].outputs[0].text)
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
This model was created with llm-compressor by running the code snippet below as part a multimodal announcement blog.
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
# Load model.
model_id = google/gemma-3-27b-it
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Recipe
recipe = [
QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
sequential_targets=["Gemma3DecoderLayer"],
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
),
]
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"
# Perform oneshot
oneshot(
model=model,
recipe=recipe,
trust_remote_code_model=True,
output_dir=SAVE_DIR
)
The model was evaluated using lm_evaluation_harness for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
--tasks openllm \
--batch_size auto
Category | Metric | google/gemma-3-27b-it | RedHatAI/gemma-3-27b-it-FP8-Dynamic | Recovery (%) |
---|---|---|---|---|
OpenLLM V1 | ARC Challenge | 72.53% | 72.70% | 100.24% |
GSM8K | 92.12% | 91.51% | 99.34% | |
Hellaswag | 85.78% | 85.69% | 99.90% | |
MMLU | 77.53% | 77.45% | 99.89% | |
Truthfulqa (mc2) | 62.20% | 62.20% | 99.99% | |
Winogrande | 79.40% | 78.77% | 99.20% | |
Average Score | 78.26% | 78.05% | 99.73% | |
Vision Evals | MMMU (val) | 50.89% | 51.00% | 100.22% |
ChartQA | 72.16% | 72.16% | 100.0% | |
Average Score | 61.53% | 61.58% | 100.11%% |