File size: 5,359 Bytes
fff2156 7a4e862 bdeba97 7a4e862 bdeba97 7a4e862 bdeba97 7a4e862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
tags:
- vllm
- vision
- fp8
license: apache-2.0
license_link: >-
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: google/gemma-3-27b-it
library_name: transformers
---
# gemma-3-27b-it-FP8-Dynamic
## Model Overview
- **Model Architecture:** gemma-3-27b-it
- **Input:** Vision-Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:** 2/24/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it).
### Model Optimizations
This model was obtained by quantizing the weights of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it) to FP8 data type, ready for inference with vLLM >= 0.5.2.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from transformers import AutoProcessor
# Define model name once
model_name = "RedHatAI/gemma-3-27b-it-FP8-dynamic"
# Load image and processor
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
# Build multimodal prompt
chat = [
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]},
{"role": "assistant", "content": []}
]
prompt = processor.apply_chat_template(chat, add_generation_prompt=True)
# Initialize model
llm = LLM(model=model_name, trust_remote_code=True)
# Run inference
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}}
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
# Display result
print("RESPONSE:", outputs[0].outputs[0].text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
<details>
<summary>Model Creation Code</summary>
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
# Load model.
model_id = google/gemma-3-27b-it
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Recipe
recipe = [
QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
sequential_targets=["Gemma3DecoderLayer"],
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
),
]
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"
# Perform oneshot
oneshot(
model=model,
recipe=recipe,
trust_remote_code_model=True,
output_dir=SAVE_DIR
)
```
</details>
## Evaluation
The model was evaluated using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:
<details>
<summary>Evaluation Commands</summary>
### OpenLLM v1
```
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
--tasks openllm \
--batch_size auto
```
</details>
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>google/gemma-3-27b-it</th>
<th>RedHatAI/gemma-3-27b-it-FP8-Dynamic</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="7"><b>OpenLLM V1</b></td>
<td>ARC Challenge</td>
<td>72.53%</td>
<td>72.70%</td>
<td>100.24%</td>
</tr>
<tr>
<td>GSM8K</td>
<td>92.12%</td>
<td>91.51%</td>
<td>99.34%</td>
</tr>
<tr>
<td>Hellaswag</td>
<td>85.78%</td>
<td>85.69%</td>
<td>99.90%</td>
</tr>
<tr>
<td>MMLU</td>
<td>77.53%</td>
<td>77.45%</td>
<td>99.89%</td>
</tr>
<tr>
<td>Truthfulqa (mc2)</td>
<td>62.20%</td>
<td>62.20%</td>
<td>99.99%</td>
</tr>
<tr>
<td>Winogrande</td>
<td>79.40%</td>
<td>78.77%</td>
<td>99.20%</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>78.26%</b></td>
<td><b>78.05%</b></td>
<td><b>99.73%</b></td>
</tr>
<tr>
<td rowspan="3"><b>Vision Evals</b></td>
<td>MMMU (val)</td>
<td>50.89%</td>
<td>51.00%</td>
<td>100.22%</td>
</tr>
<tr>
<td>ChartQA</td>
<td>72.16%</td>
<td>72.16%</td>
<td>100.0%</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>61.53%</b></td>
<td><b>61.58%</b></td>
<td><b>100.11%%</b></td>
</tr>
</tbody>
</table>
|