File size: 5,359 Bytes
fff2156
7a4e862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdeba97
 
7a4e862
 
 
 
bdeba97
 
7a4e862
 
 
 
bdeba97
 
7a4e862
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
tags:
- vllm
- vision
- fp8
license: apache-2.0
license_link: >-
  https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: google/gemma-3-27b-it
library_name: transformers
---

# gemma-3-27b-it-FP8-Dynamic

## Model Overview
- **Model Architecture:** gemma-3-27b-it
  - **Input:** Vision-Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP8
  - **Activation quantization:** FP8
- **Release Date:** 2/24/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic

Quantized version of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it).

### Model Optimizations

This model was obtained by quantizing the weights of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it) to FP8 data type, ready for inference with vLLM >= 0.5.2.

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from transformers import AutoProcessor

# Define model name once
model_name = "RedHatAI/gemma-3-27b-it-FP8-dynamic"

# Load image and processor
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)

# Build multimodal prompt
chat = [
    {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]},
    {"role": "assistant", "content": []}
]
prompt = processor.apply_chat_template(chat, add_generation_prompt=True)

# Initialize model
llm = LLM(model=model_name, trust_remote_code=True)

# Run inference
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}}
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))

# Display result
print("RESPONSE:", outputs[0].outputs[0].text)

```

vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.

<details>
  <summary>Model Creation Code</summary>
  
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier

# Load model.
model_id = google/gemma-3-27b-it
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

# Recipe
recipe = [
    QuantizationModifier(
        targets="Linear",
        scheme="FP8_DYNAMIC",
        sequential_targets=["Gemma3DecoderLayer"],
        ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
    ),
]

SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"

# Perform oneshot
oneshot(
    model=model,
    recipe=recipe,
    trust_remote_code_model=True,
    output_dir=SAVE_DIR
)


```
</details>

## Evaluation

The model was evaluated using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:

<details>
<summary>Evaluation Commands</summary>

### OpenLLM v1
```
lm_eval \
  --model vllm \
  --model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
  --tasks openllm \
  --batch_size auto
```
</details>


### Accuracy

<table>
  <thead>
    <tr>
      <th>Category</th>
      <th>Metric</th>
      <th>google/gemma-3-27b-it</th>
      <th>RedHatAI/gemma-3-27b-it-FP8-Dynamic</th>
      <th>Recovery (%)</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="7"><b>OpenLLM V1</b></td>
      <td>ARC Challenge</td>
      <td>72.53%</td>
      <td>72.70%</td>
      <td>100.24%</td>
    </tr>
    <tr>
      <td>GSM8K</td>
      <td>92.12%</td>
      <td>91.51%</td>
      <td>99.34%</td>
    </tr>
    <tr>
      <td>Hellaswag</td>
      <td>85.78%</td>
      <td>85.69%</td>
      <td>99.90%</td>
    </tr>
    <tr>
      <td>MMLU</td>
      <td>77.53%</td>
      <td>77.45%</td>
      <td>99.89%</td>
    </tr>
    <tr>
      <td>Truthfulqa (mc2)</td>
      <td>62.20%</td>
      <td>62.20%</td>
      <td>99.99%</td>
    </tr>
    <tr>
      <td>Winogrande</td>
      <td>79.40%</td>
      <td>78.77%</td>
      <td>99.20%</td>
    </tr>
    <tr>
      <td><b>Average Score</b></td>
      <td><b>78.26%</b></td>
      <td><b>78.05%</b></td>
      <td><b>99.73%</b></td>
    </tr>
    <tr>
      <td rowspan="3"><b>Vision Evals</b></td>
      <td>MMMU (val)</td>
      <td>50.89%</td>	
      <td>51.00%</td>
      <td>100.22%</td>
    </tr>
    <tr>
      <td>ChartQA</td>
      <td>72.16%</td>
      <td>72.16%</td>
      <td>100.0%</td>
    </tr>
    <tr>
      <td><b>Average Score</b></td>
      <td><b>61.53%</b></td>
      <td><b>61.58%</b></td>
      <td><b>100.11%%</b></td>
    </tr>
  </tbody>
</table>