|
--- |
|
tags: |
|
- w8a8 |
|
- INT8 |
|
- vllm |
|
- audio |
|
license: apache-2.0 |
|
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md |
|
language: |
|
- en |
|
base_model: openai/whisper-tiny |
|
library_name: transformers |
|
--- |
|
|
|
# whisper-tiny-quantized.w8a8 |
|
|
|
## Model Overview |
|
- **Model Architecture:** whisper-tiny |
|
- **Input:** Audio-Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** INT8 |
|
- **Activation quantization:** INT8 |
|
- **Release Date:** 04/16/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) to INT8 data type, ready for inference with vLLM >= 0.5.2. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm.assets.audio import AudioAsset |
|
from vllm import LLM, SamplingParams |
|
|
|
# prepare model |
|
llm = LLM( |
|
model="neuralmagic/whisper-tiny-quantized.w8a8", |
|
max_model_len=448, |
|
max_num_seqs=400, |
|
limit_mm_per_prompt={"audio": 1}, |
|
) |
|
|
|
# prepare inputs |
|
inputs = { # Test explicit encoder/decoder prompt |
|
"encoder_prompt": { |
|
"prompt": "", |
|
"multi_modal_data": { |
|
"audio": AudioAsset("winning_call").audio_and_sample_rate, |
|
}, |
|
}, |
|
"decoder_prompt": "<|startoftranscript|>", |
|
} |
|
|
|
# generate response |
|
print("========== SAMPLE GENERATION ==============") |
|
outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64)) |
|
print(f"PROMPT : {outputs[0].prompt}") |
|
print(f"RESPONSE: {outputs[0].outputs[0].text}") |
|
print("==========================================") |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
<details> |
|
<summary>Model Creation Code</summary> |
|
|
|
```bash |
|
python quantize.py --model_path openai/whisper-tiny --quant_path "output_dir/whisper-tiny-quantized.w8a8" --calib_size 1024 --dampening_frac 0.01 |
|
``` |
|
|
|
|
|
```python |
|
import torch |
|
import argparse |
|
from datasets import load_dataset |
|
from transformers import WhisperProcessor |
|
from llmcompressor import oneshot |
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration |
|
import os |
|
from compressed_tensors.quantization import QuantizationArgs, QuantizationType, QuantizationStrategy, ActivationOrdering, QuantizationScheme |
|
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--model_path', type=str) |
|
parser.add_argument('--quant_path', type=str) |
|
parser.add_argument('--calib_size', type=int, default=256) |
|
parser.add_argument('--dampening_frac', type=float, default=0.1) |
|
parser.add_argument('--observer', type=str, default="minmax") |
|
parser.add_argument('--save_dir', type=str, required=True) |
|
|
|
|
|
args = parser.parse_args() |
|
model_id = args.model_path |
|
|
|
model = TraceableWhisperForConditionalGeneration.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
) |
|
model.config.forced_decoder_ids = None |
|
processor = WhisperProcessor.from_pretrained(model_id) |
|
|
|
# Configure processor the dataset task. |
|
processor.tokenizer.set_prefix_tokens(language="en", task="transcribe") |
|
|
|
# Select calibration dataset. |
|
DATASET_ID = "MLCommons/peoples_speech" |
|
DATASET_SUBSET = "test" |
|
DATASET_SPLIT = "test" |
|
|
|
# Select number of samples for calibration. 512 samples is a good place to start. |
|
# Increasing the number of samples can improve accuracy. |
|
|
|
NUM_CALIBRATION_SAMPLES = args.calib_size |
|
MAX_SEQUENCE_LENGTH = 2048 |
|
dampening_frac=args.dampening_frac |
|
actorder_arg=args.actorder |
|
group_size=args.group_size |
|
|
|
# Load dataset and preprocess. |
|
ds = load_dataset( |
|
DATASET_ID, |
|
DATASET_SUBSET, |
|
split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]", |
|
trust_remote_code=True, |
|
) |
|
|
|
def preprocess(example): |
|
return { |
|
"array": example["audio"]["array"], |
|
"sampling_rate": example["audio"]["sampling_rate"], |
|
"text": " " + example["text"].capitalize(), |
|
} |
|
|
|
ds = ds.map(preprocess, remove_columns=ds.column_names) |
|
|
|
# Process inputs. |
|
def process(sample): |
|
inputs = processor( |
|
audio=sample["array"], |
|
sampling_rate=sample["sampling_rate"], |
|
text=sample["text"], |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
|
|
inputs["input_features"] = inputs["input_features"].to(dtype=model.dtype) |
|
inputs["decoder_input_ids"] = inputs["labels"] |
|
del inputs["labels"] |
|
|
|
return inputs |
|
|
|
ds = ds.map(process, remove_columns=ds.column_names) |
|
|
|
# Define a oneshot data collator for multimodal inputs. |
|
def data_collator(batch): |
|
assert len(batch) == 1 |
|
return {key: torch.tensor(value) for key, value in batch[0].items()} |
|
|
|
ignore=["lm_head"] |
|
|
|
#Recipe |
|
recipe = [ |
|
GPTQModifier( |
|
targets="Linear", |
|
scheme="W8A8", |
|
sequential_targets=["WhisperEncoderLayer", "WhisperDecoderLayer"], |
|
ignore=ignore, |
|
) |
|
] |
|
|
|
# Apply algorithms. |
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
data_collator=data_collator, |
|
) |
|
|
|
|
|
# Save to disk compressed. |
|
save_name = f"{model_id.split('/')[-1]}-quantized.w8a8" |
|
save_path = os.path.join(args.save_dir, save_name) |
|
print("Saving model:", save_path) |
|
model.save_pretrained(save_path, save_compressed=True) |
|
processor.save_pretrained(save_path) |
|
``` |
|
</details> |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on [LibriSpeech](https://huggingface.co/datasets/lmms-lab/librispeech) and [Fleurs](https://huggingface.co/datasets/lmms-lab/fleurs) datasets using [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval), via the following commands: |
|
|
|
<details> |
|
<summary>Evaluation Commands</summary> |
|
|
|
Librispeech: |
|
``` |
|
lmms-eval \ |
|
--model=whisper_vllm \ |
|
--model_args="pretrained=neuralmagic-ent/whisper-tiny-quantized.w8a8" \ |
|
--batch_size 64 \ |
|
--output_path <output_file_path> \ |
|
--tasks librispeech |
|
``` |
|
|
|
Fleurs: |
|
``` |
|
lmms-eval \ |
|
--model=whisper_vllm \ |
|
--model_args="pretrained=neuralmagic-ent/whisper-tiny-quantized.w8a8" \ |
|
--batch_size 64 \ |
|
--output_path <output_file_path> \ |
|
--tasks fleurs |
|
``` |
|
</details> |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th>Benchmark</th> |
|
<th>Split</th> |
|
<th>BF16</th> |
|
<th>w8a8</th> |
|
<th>Recovery (%)</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="2"><b>LibriSpeech (WER)</b></td> |
|
<td>test-clean</td> |
|
<td>7.6602</td> |
|
<td>7.9356</td> |
|
<td>96.53%</td> |
|
</tr> |
|
<tr> |
|
<td>test-other</td> |
|
<td>17.1041</td> |
|
<td>17.3216</td> |
|
<td>98.74%</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3"><b>Fleurs (X→en, WER)</b></td> |
|
<td>cmn_hans_cn</td> |
|
<td>43.8226</td> |
|
<td>43.6435</td> |
|
<td>100.41%</td> |
|
</tr> |
|
<tr> |
|
<td>en</td> |
|
<td>13.6638</td> |
|
<td>13.5883</td> |
|
<td>100.56%</td> |
|
</tr> |
|
<tr> |
|
<td>yue_hant_hk</td> |
|
<td>60.1848</td> |
|
<td>61.8608</td> |
|
<td>97.30%</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|