jina-reranker-v2-base-multilingual test

This is a Cross Encoder model finetuned from jinaai/jina-reranker-v2-base-multilingual using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the ๐Ÿค— Hub
model = CrossEncoder("SMARTICT/jina-reranker-v2-base-multilingual-wiki-tr-rag-prefix")
# Get scores for pairs of texts
pairs = [
    ['query: Kumbara tasarruf bilincinin aลŸฤฑlanmasฤฑnda nasฤฑl bir araรงtฤฑr?', 'passage: Kumbara, รถzellikle รงocuklara kรผรงรผk yaลŸta para biriktirmenin ve tasarrufun รถnemini anlamalarฤฑnฤฑ saฤŸlamak iรงin eฤŸlenceli ve gรถrsel bir araรง sunar. ฤฐรงine attฤฑklarฤฑ her kuruลŸu gรถrerek birikimlerinin artฤฑลŸฤฑnฤฑ gรถzlemlemeleri, onlarda tasarruf alฤฑลŸkanlฤฑฤŸฤฑ kazanmalarฤฑna yardฤฑmcฤฑ olur.'],
    ['query: Kumbara tasarruf bilincinin aลŸฤฑlanmasฤฑnda nasฤฑl bir araรงtฤฑr?', 'passage: Uzay araรงlarฤฑnda yakฤฑt tasarrufu saฤŸlamak iรงin reaksiyon kontrol sistemlerine alternatif olarak ark jetleri, iyon iticileri veya Hall etkili iticiler gibi yรผksek รถzgรผl itki motorlarฤฑ kullanฤฑlabilir. Ayrฤฑca, ISS dahil bazฤฑ uzay araรงlarฤฑ, dรถnme oranlarฤฑnฤฑ kontrol etmek iรงin dรถnen momentum รงarklarฤฑndan yararlanฤฑr.'],
    ['query: Kumbara tasarruf bilincinin aลŸฤฑlanmasฤฑnda nasฤฑl bir araรงtฤฑr?', 'passage: Kubar, genellikle pipo, bong veya vaporizรถr kullanฤฑlarak iรงilir. Ayrฤฑca sigara gibi sarฤฑlarak da tรผketilebilir. Ancak kubar tek baลŸฤฑna yanmadฤฑฤŸฤฑ iรงin, bu ลŸekilde iรงildiฤŸinde genellikle normal esrar veya tรผtรผn ile karฤฑลŸtฤฑrฤฑlฤฑr. Dekarboksile edilmiลŸ kubar ise oral yolla da kullanฤฑlabilir.'],
    ['query: Kumbara tasarruf bilincinin aลŸฤฑlanmasฤฑnda nasฤฑl bir araรงtฤฑr?', 'passage: TaลŸฤฑma kuvveti, bir cismin havada yukarฤฑ doฤŸru kaldฤฑrฤฑlmasฤฑna neden olan kuvvettir. Direnรง kuvveti ise cismin hareketini yavaลŸlatan, ona karลŸฤฑ koyan kuvvettir. Hava taลŸฤฑmacฤฑlฤฑฤŸฤฑnda her iki kuvvet de รถnemlidir. Uรงaklar uรงabilmek iรงin yeterli taลŸฤฑma kuvveti รผretmelidir. Ancak aynฤฑ zamanda direnci minimize etmek iรงin tasarlanฤฑrlar รงรผnkรผ direnรง yakฤฑt tรผketimini artฤฑrฤฑr. Kara taลŸฤฑtlarฤฑnda ise dรผลŸรผk hฤฑzlarda direnรง kuvveti รถn plandadฤฑr. Ancak yรผksek hฤฑzlarda, รถrneฤŸin Formula 1 araรงlarฤฑnda, taลŸฤฑma kuvveti de รถnemli hale gelir รงรผnkรผ aracฤฑn yol tutuลŸunu saฤŸlar.'],
    ['query: Kumbara tasarruf bilincinin aลŸฤฑlanmasฤฑnda nasฤฑl bir araรงtฤฑr?', 'passage: Evet, yazฤฑda da belirtildiฤŸi gibi kuvvet makineleri yakฤฑt kullanan ฤฑsฤฑ makineleri ve doฤŸal enerji kaynaklarฤฑnฤฑ kullanan makinelere ayrฤฑlฤฑr. ร–rneฤŸin, araรงlarda kullanฤฑlan motorlar ฤฑsฤฑ makineleridir รงรผnkรผ benzin veya dizel yakฤฑtฤฑ kullanarak mekanik enerji รผretirler. Rรผzgar tรผrbinleri ise rรผzgarฤฑn kinetik enerjisini elektrik enerjisine dรถnรผลŸtรผren doฤŸal enerji kaynaklฤฑ kuvvet makineleridir.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'query: Kumbara tasarruf bilincinin aลŸฤฑlanmasฤฑnda nasฤฑl bir araรงtฤฑr?',
    [
        'passage: Kumbara, รถzellikle รงocuklara kรผรงรผk yaลŸta para biriktirmenin ve tasarrufun รถnemini anlamalarฤฑnฤฑ saฤŸlamak iรงin eฤŸlenceli ve gรถrsel bir araรง sunar. ฤฐรงine attฤฑklarฤฑ her kuruลŸu gรถrerek birikimlerinin artฤฑลŸฤฑnฤฑ gรถzlemlemeleri, onlarda tasarruf alฤฑลŸkanlฤฑฤŸฤฑ kazanmalarฤฑna yardฤฑmcฤฑ olur.',
        'passage: Uzay araรงlarฤฑnda yakฤฑt tasarrufu saฤŸlamak iรงin reaksiyon kontrol sistemlerine alternatif olarak ark jetleri, iyon iticileri veya Hall etkili iticiler gibi yรผksek รถzgรผl itki motorlarฤฑ kullanฤฑlabilir. Ayrฤฑca, ISS dahil bazฤฑ uzay araรงlarฤฑ, dรถnme oranlarฤฑnฤฑ kontrol etmek iรงin dรถnen momentum รงarklarฤฑndan yararlanฤฑr.',
        'passage: Kubar, genellikle pipo, bong veya vaporizรถr kullanฤฑlarak iรงilir. Ayrฤฑca sigara gibi sarฤฑlarak da tรผketilebilir. Ancak kubar tek baลŸฤฑna yanmadฤฑฤŸฤฑ iรงin, bu ลŸekilde iรงildiฤŸinde genellikle normal esrar veya tรผtรผn ile karฤฑลŸtฤฑrฤฑlฤฑr. Dekarboksile edilmiลŸ kubar ise oral yolla da kullanฤฑlabilir.',
        'passage: TaลŸฤฑma kuvveti, bir cismin havada yukarฤฑ doฤŸru kaldฤฑrฤฑlmasฤฑna neden olan kuvvettir. Direnรง kuvveti ise cismin hareketini yavaลŸlatan, ona karลŸฤฑ koyan kuvvettir. Hava taลŸฤฑmacฤฑlฤฑฤŸฤฑnda her iki kuvvet de รถnemlidir. Uรงaklar uรงabilmek iรงin yeterli taลŸฤฑma kuvveti รผretmelidir. Ancak aynฤฑ zamanda direnci minimize etmek iรงin tasarlanฤฑrlar รงรผnkรผ direnรง yakฤฑt tรผketimini artฤฑrฤฑr. Kara taลŸฤฑtlarฤฑnda ise dรผลŸรผk hฤฑzlarda direnรง kuvveti รถn plandadฤฑr. Ancak yรผksek hฤฑzlarda, รถrneฤŸin Formula 1 araรงlarฤฑnda, taลŸฤฑma kuvveti de รถnemli hale gelir รงรผnkรผ aracฤฑn yol tutuลŸunu saฤŸlar.',
        'passage: Evet, yazฤฑda da belirtildiฤŸi gibi kuvvet makineleri yakฤฑt kullanan ฤฑsฤฑ makineleri ve doฤŸal enerji kaynaklarฤฑnฤฑ kullanan makinelere ayrฤฑlฤฑr. ร–rneฤŸin, araรงlarda kullanฤฑlan motorlar ฤฑsฤฑ makineleridir รงรผnkรผ benzin veya dizel yakฤฑtฤฑ kullanarak mekanik enerji รผretirler. Rรผzgar tรผrbinleri ise rรผzgarฤฑn kinetik enerjisini elektrik enerjisine dรถnรผลŸtรผren doฤŸal enerji kaynaklฤฑ kuvvet makineleridir.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

Metric Value
map 0.9094 (-0.0382)
mrr@10 0.9248 (-0.0228)
ndcg@10 0.9386 (-0.0118)

Cross Encoder Reranking

  • Datasets: NanoMSMARCO_R100, NanoNFCorpus_R100 and NanoNQ_R100
  • Evaluated with CrossEncoderRerankingEvaluator with these parameters:
    {
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric NanoMSMARCO_R100 NanoNFCorpus_R100 NanoNQ_R100
map 0.5847 (+0.0951) 0.4027 (+0.1417) 0.6937 (+0.2741)
mrr@10 0.5880 (+0.1105) 0.6892 (+0.1894) 0.7346 (+0.3079)
ndcg@10 0.6644 (+0.1240) 0.4778 (+0.1527) 0.7569 (+0.2562)

Cross Encoder Nano BEIR

  • Dataset: NanoBEIR_R100_mean
  • Evaluated with CrossEncoderNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "rerank_k": 100,
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric Value
map 0.5604 (+0.1703)
mrr@10 0.6706 (+0.2026)
ndcg@10 0.6330 (+0.1776)

Training Details

Training Dataset

Unnamed Dataset

  • Size: 26,004 training samples
  • Columns: question, answer, and label
  • Approximate statistics based on the first 1000 samples:
    question answer label
    type string string int
    details
    • min: 27 characters
    • mean: 78.97 characters
    • max: 182 characters
    • min: 44 characters
    • mean: 273.24 characters
    • max: 836 characters
    • 0: ~81.00%
    • 1: ~19.00%
  • Samples:
    question answer label
    query: Kumbara tasarruf bilincinin aลŸฤฑlanmasฤฑnda nasฤฑl bir araรงtฤฑr? passage: Kumbara, รถzellikle รงocuklara kรผรงรผk yaลŸta para biriktirmenin ve tasarrufun รถnemini anlamalarฤฑnฤฑ saฤŸlamak iรงin eฤŸlenceli ve gรถrsel bir araรง sunar. ฤฐรงine attฤฑklarฤฑ her kuruลŸu gรถrerek birikimlerinin artฤฑลŸฤฑnฤฑ gรถzlemlemeleri, onlarda tasarruf alฤฑลŸkanlฤฑฤŸฤฑ kazanmalarฤฑna yardฤฑmcฤฑ olur. 1
    query: Kumbara tasarruf bilincinin aลŸฤฑlanmasฤฑnda nasฤฑl bir araรงtฤฑr? passage: Uzay araรงlarฤฑnda yakฤฑt tasarrufu saฤŸlamak iรงin reaksiyon kontrol sistemlerine alternatif olarak ark jetleri, iyon iticileri veya Hall etkili iticiler gibi yรผksek รถzgรผl itki motorlarฤฑ kullanฤฑlabilir. Ayrฤฑca, ISS dahil bazฤฑ uzay araรงlarฤฑ, dรถnme oranlarฤฑnฤฑ kontrol etmek iรงin dรถnen momentum รงarklarฤฑndan yararlanฤฑr. 0
    query: Kumbara tasarruf bilincinin aลŸฤฑlanmasฤฑnda nasฤฑl bir araรงtฤฑr? passage: Kubar, genellikle pipo, bong veya vaporizรถr kullanฤฑlarak iรงilir. Ayrฤฑca sigara gibi sarฤฑlarak da tรผketilebilir. Ancak kubar tek baลŸฤฑna yanmadฤฑฤŸฤฑ iรงin, bu ลŸekilde iรงildiฤŸinde genellikle normal esrar veya tรผtรผn ile karฤฑลŸtฤฑrฤฑlฤฑr. Dekarboksile edilmiลŸ kubar ise oral yolla da kullanฤฑlabilir. 0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • bf16: True
  • dataloader_num_workers: 4
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss gooaq-dev_ndcg@10 NanoMSMARCO_R100_ndcg@10 NanoNFCorpus_R100_ndcg@10 NanoNQ_R100_ndcg@10 NanoBEIR_R100_mean_ndcg@10
-1 -1 - 0.9555 (+0.0050) 0.6801 (+0.1397) 0.4668 (+0.1417) 0.7932 (+0.2925) 0.6467 (+0.1913)
0.0006 1 0.2737 - - - - -
0.6150 1000 0.0997 - - - - -
1.2300 2000 0.019 - - - - -
1.8450 3000 0.0202 - - - - -
-1 -1 - 0.9386 (-0.0118) 0.6644 (+0.1240) 0.4778 (+0.1527) 0.7569 (+0.2562) 0.6330 (+0.1776)

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.0.2
  • Transformers: 4.51.1
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
29
Safetensors
Model size
278M params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for SMARTICT/jina-reranker-v2-base-multilingual-wiki-tr-rag-prefix

Finetuned
(1)
this model

Evaluation results