SodaXII's picture
Update README.md
0431ce4 verified
metadata
library_name: transformers
license: mit
base_model: timm/efficientvit_m4.r224_in1k
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: efficientvit_m4.r224_in1k_rice-leaf-disease-augmented-v4_v5_fft
    results: []

efficientvit_m4.r224_in1k_rice-leaf-disease-augmented-v4_v5_fft

This model is a fine-tuned version of timm/efficientvit_m4.r224_in1k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4767
  • Accuracy: 0.8658

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 256
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0834 0.5 64 2.0788 0.1577
2.0669 1.0 128 2.0488 0.1711
2.0293 1.5 192 2.0006 0.2785
1.9774 2.0 256 1.9270 0.3792
1.8929 2.5 320 1.8456 0.4597
1.8113 3.0 384 1.7539 0.5235
1.7181 3.5 448 1.6894 0.5570
1.6738 4.0 512 1.6412 0.5839
1.6197 4.5 576 1.6008 0.6141
1.5808 5.0 640 1.5555 0.6208
1.5563 5.5 704 1.5397 0.6174
1.5374 6.0 768 1.5281 0.6409
1.5426 6.5 832 1.5175 0.6309
1.5093 7.0 896 1.4774 0.6376
1.4656 7.5 960 1.4045 0.6443
1.3943 8.0 1024 1.3379 0.6577
1.3244 8.5 1088 1.2769 0.6879
1.2782 9.0 1152 1.2230 0.6946
1.2293 9.5 1216 1.2051 0.6980
1.1952 10.0 1280 1.1664 0.7114
1.1759 10.5 1344 1.1598 0.7215
1.1638 11.0 1408 1.1507 0.7248
1.1612 11.5 1472 1.1345 0.7282
1.1221 12.0 1536 1.0794 0.7383
1.0554 12.5 1600 1.0158 0.7584
0.9903 13.0 1664 0.9986 0.7651
0.9281 13.5 1728 0.9145 0.7718
0.9074 14.0 1792 0.8825 0.7919
0.86 14.5 1856 0.8671 0.7919
0.8338 15.0 1920 0.8936 0.7785
0.8242 15.5 1984 0.8743 0.7886
0.8269 16.0 2048 0.8563 0.7886
0.8116 16.5 2112 0.8288 0.7987
0.7591 17.0 2176 0.7901 0.7987
0.7088 17.5 2240 0.7543 0.8087
0.6646 18.0 2304 0.7242 0.8221
0.6291 18.5 2368 0.7118 0.8188
0.6018 19.0 2432 0.6792 0.8255
0.5824 19.5 2496 0.6707 0.8289
0.5794 20.0 2560 0.6707 0.8322
0.5722 20.5 2624 0.6688 0.8356
0.5643 21.0 2688 0.6503 0.8255
0.5286 21.5 2752 0.6360 0.8221
0.5141 22.0 2816 0.6289 0.8289
0.4557 22.5 2880 0.5956 0.8255
0.4438 23.0 2944 0.5746 0.8389
0.4084 23.5 3008 0.5673 0.8490
0.4007 24.0 3072 0.5566 0.8456
0.3777 24.5 3136 0.5547 0.8456
0.3824 25.0 3200 0.5598 0.8523
0.3807 25.5 3264 0.5528 0.8523
0.3549 26.0 3328 0.5500 0.8490
0.3357 26.5 3392 0.5255 0.8523
0.3206 27.0 3456 0.5039 0.8523
0.2941 27.5 3520 0.4959 0.8725
0.2754 28.0 3584 0.4910 0.8523
0.2536 28.5 3648 0.4837 0.8658
0.2583 29.0 3712 0.4753 0.8658
0.2519 29.5 3776 0.4844 0.8792
0.2458 30.0 3840 0.4767 0.8658

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.1