metadata
base_model: FacebookAI/xlm-roberta-base
datasets:
- StyleDistance/mstyledistance_training_triplets
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- datadreamer
- datadreamer-0.35.0
- synthetic
- sentence-transformers
- feature-extraction
- sentence-similarity
widget:
- example_title: Example 1
source_sentence: 彼は技術的な複雑さと格闘し、彼の作品は驚くべき視覚的緊張を生み出した。
sentences:
- >-
Serviste mariscos frescos en el condado de Middlesex y áreas
circundantes.
- >-
Él sirvió mariscos frescos en el condado de Middlesex y áreas
circundantes.
- example_title: Example 2
source_sentence: Bien sûr, ils termineront la construction du pont en une semaine.
sentences:
- >-
Oh, you mean when I single-handedly tackled that bespoke headboard
project?
- Remember when I completed that bespoke headboard project on my own?
- example_title: Example 3
source_sentence: 我将使用有限的色调和小尺寸进行像素艺术的简化和风格化设计。
sentences:
- >-
Я ценю ТТ-пистолет за его огневую мощь; его проникающая способность
впечатляет меня.
- 你将使用有限的色调和小尺寸进行像素艺术的简化和风格化设计。
Model Card
Example Usage
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer('StyleDistance/mstyledistance') # Load model
input = model.encode('彼は技術的な複雑さと格闘し、彼の作品は驚くべき視覚的緊張を生み出した。')
others = model.encode(['Serviste mariscos frescos en el condado de Middlesex y áreas circundantes.', 'Él sirvió mariscos frescos en el condado de Middlesex y áreas circundantes.'])
print(cos_sim(input, others))
This model was trained with a synthetic dataset with DataDreamer 🤖💤. The synthetic dataset card and model card can be found here. The training arguments can be found here.