See axolotl config
axolotl version: 0.10.0.dev0
# === Start-up Commands ===
# curl -LsSf https://astral.sh/uv/install.sh | sh
# export PATH="$HOME/.local/bin:$PATH"
# uv venv
# source .venv/bin/activate
# git clone https://github.com/axolotl-ai-cloud/axolotl
# cd axolotl
# uv pip install torch==2.5.1 packaging ninja setuptools ftfy deepspeed huggingface_hub[cli,hf_transfer]
# uv pip install "cut-cross-entropy[transformers] @ git+https://github.com/strangedove/ml-cross-entropy.git@gemma3-multimodal"
# uv pip install apollo-torch
# uv pip install --no-build-isolation -e .[flash-attn]
# uv pip install git+https://github.com/huggingface/transformers.git
# uv pip install git+https://github.com/linkedin/Liger-Kernel.git
# export HF_HUB_ENABLE_HF_TRANSFER=1
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# apt update && apt install -y libopenmpi-dev && curl -LsSf https://astral.sh/uv/install.sh | sh && export PATH="$HOME/.local/bin:$PATH" && git clone https://github.com/axolotl-ai-cloud/axolotl && uv venv && source .venv/bin/activate && cd axolotl && uv pip install torch==2.5.1 packaging ninja mpi4py setuptools ftfy deepspeed huggingface_hub[cli,hf_transfer] && uv pip install apollo-torch && uv pip install "cut-cross-entropy[transformers] @ git+https://github.com/strangedove/ml-cross-entropy.git@qwen3" && uv pip install git+https://github.com/linkedin/Liger-Kernel.git && uv pip install --no-build-isolation -e .[flash-attn] && uv pip install git+https://github.com/huggingface/transformers.git && export HF_HUB_ENABLE_HF_TRANSFER=1 && cd .. && huggingface-cli login --token $hf_key && wandb login $wandb_key
# === Model Configuration ===
base_model: Columbidae/Qwen3-30B-A3B-Noisy
load_in_8bit: false
load_in_4bit: true
# === HF Configuration ===
hub_model_id: ToastyPigeon/qwen3-30b-noised-iter1
hub_strategy: "every_save"
# === Training Setup ===
num_epochs: 1
micro_batch_size: 4
gradient_accumulation_steps: 2
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# === Evaluation ===
val_set_size: 300
evals_per_epoch: 10
#eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: true
#eval_strategy: "no"
# === LoRA Configuration ===
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 32
lora_dropout: 0
lora_target_linear:
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
#lora_mlp_kernel: true
#lora_qkv_kernel: true
#lora_o_kernel: true
# === Hyperparameter Configuration ===
#optimizer: apollo_adamw_layerwise
optimizer: paged_adamw_8bit
# Apollo-mini configuration:
#optim_args: "proj=random,rank=1,scale=128.0,scale_type=tensor,update_proj_gap=200"
# Regular Apollo configuration:
# optim_args:
#optim_target_modules: all_linear
learning_rate: 1e-5
lr_scheduler: rex
weight_decay: 0.01
warmup_steps: 0
#warmup_ratio: 0.05
# === Data Configuration ===
#chat_template: jinja
#chat_template_jinja: "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}"
#special_tokens:
# eos_token: "<end_of_turn>"
shuffle_merged_datasets: true
datasets:
- path: ToastyPigeon/mixed-data-for-qwen
type: chat_template
data_files: mixed_data_for_qwen_part1.json
dataset_prepared_path: last_run_prepared
# === Plugins ===
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
# === Hardware Optimization ===
gradient_checkpointing: true
#gradient_checkpointing_kwargs:
# use_reentrant: true
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
#liger_fused_linear_cross_entropy: true
#unsloth_cross_entropy_loss: true
cut_cross_entropy: true
# Only if using multiple GPUs:
#deepspeed: axolotl/deepspeed_configs/zero2.json
# === Wandb Tracking ===
wandb_project: Qwen3MoE
# wandb_entity: [WANDB_ENTITY]
# wandb_name: [WANDB_RUN_NAME]
# === Checkpointing ===
saves_per_epoch: 10
save_total_limit: 1
# === Advanced Settings ===
output_dir: ./ckpts
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
save_safetensors: true
logging_steps: 1
gc_steps: 10
seed: 69
qwen3-30b-noised-iter1
This model is a fine-tuned version of Columbidae/Qwen3-30B-A3B-Noisy on the ToastyPigeon/mixed-data-for-qwen dataset. It achieves the following results on the evaluation set:
- Loss: 0.6300
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 69
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7597 | 0.0035 | 1 | 0.8862 |
0.9744 | 0.1019 | 29 | 0.7604 |
0.8101 | 0.2039 | 58 | 0.6862 |
0.7025 | 0.3058 | 87 | 0.6667 |
0.6058 | 0.4077 | 116 | 0.6552 |
0.5499 | 0.5097 | 145 | 0.6466 |
0.494 | 0.6116 | 174 | 0.6404 |
0.6 | 0.7135 | 203 | 0.6358 |
0.7872 | 0.8155 | 232 | 0.6325 |
0.7281 | 0.9174 | 261 | 0.6300 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support