Tomo-cho/llm-jp-3-13b-it-01_lora

概要

松尾研大規模言語モデル講座2024のコンペ用の提出モデル作成の一環として作成・公開しています。

[llm-jp/llm-jp-3-13b]をLoRAでFine-Tuningしたものです。 学習用データセットとして[ichikara-instruction-003-001-1.json]を使用しています。

推論方法(Google Colabを前提としています)

必要なライブラリをインストール

%%capture !pip install unsloth !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install -U torch !pip install -U peft

必要なライブラリを読み込み

from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm import re

ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。

model_id = "llm-jp/llm-jp-3-13b" adapter_id = "Tomo-cho/llm-jp-3-13b-it-01_lora"

Hugging Face Token を指定。

下記の URL から Hugging Face Token を取得できますので下記の HF_TOKEN に入れてください。

https://huggingface.co/settings/tokens

HF_TOKEN = "" #@param {type:"string"}

unslothのFastLanguageModelで元のモデルをロード。

dtype = None # Noneにしておけば自動で設定 load_in_4bit = True # 今回は13Bモデルを扱うためTrue

model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, )

元のモデルにLoRAのアダプタを統合。

model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

タスクとなるデータの読み込み。(elyza-tasks-100-TV_0.jsonlというファイル名を読み込む場合)

事前にデータをアップロードしてください。

datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = ""

モデルを用いてタスクの推論。

推論するためにモデルのモードを変更

FastLanguageModel.for_inference(model)

results = [] for dt in tqdm(datasets): input = dt["input"]

prompt = f"""### 指示\n{input}\n### 回答\n"""

inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

結果をjsonlで保存。

ここではadapter_idを元にファイル名を決定しているが、ファイル名は任意で問題なし。

json_file_id = re.sub(".*/", "", adapter_id) with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n')

ライセンス

本モデルは学習に利用したデータの関係で以下のライセンスの影響を受けます。

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Tomo-cho/llm-jp-3-13b-it-01_lora

Finetuned
(1117)
this model