Zayn's picture
Update README.md
7d5d560
|
raw
history blame
1.54 kB
metadata
tags:
  - image-to-text
  - image-captioning
license: apache-2.0
widget:
  - src: >-
      https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
    example_title: Savanna
  - src: >-
      https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
    example_title: Football Match
  - src: >-
      https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
    example_title: Airport

This is an image captioning model training by Zayn


from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer

model = VisionEncoderDecoderModel.from_pretrained("Zayn/vit2distilgpt2")
feature_extractor = ViTFeatureExtractor.from_pretrained("Zayn/vit2distilgpt2")
tokenizer = AutoTokenizer.from_pretrained("Zayn/vit2distilgpt2")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)



max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image_paths):
  images = []
  for image_path in image_paths:
    i_image = Image.open(image_path)
    if i_image.mode != "RGB":
      i_image = i_image.convert(mode="RGB")

    images.append(i_image)

  pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
  pixel_values = pixel_values.to(device)

  output_ids = model.generate(pixel_values, **gen_kwargs)

  preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
  preds = [pred.strip() for pred in preds]
  return preds


predict_step(['Image URL.jpg'])