SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What are the main objectives of the directives mentioned in the text regarding greenhouse gas emissions and carbon dioxide storage, and how do they relate to environmental protection and sustainability within the European Union?',
'(24) Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading within the Union and amending Council Directive 96/61/EC (OJ L 275, 25.10.2003, p. 32).\n\n(25) Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006 (OJ L 140, 5.6.2009, p. 114).\n\n(26) Directive 2014/23/EU of the European Parliament and of the Council of 26 February 2014 on the award of concession contracts (OJ L 94, 28.3.2014, p. 1).',
'Article 33\n\nResponsibility and liability for drawing up and publishing the financial statements and the management report\n\n▼M4\n\n1.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.666 |
cosine_accuracy@3 | 0.8842 |
cosine_accuracy@5 | 0.9313 |
cosine_accuracy@10 | 0.9672 |
cosine_precision@1 | 0.666 |
cosine_precision@3 | 0.2947 |
cosine_precision@5 | 0.1863 |
cosine_precision@10 | 0.0967 |
cosine_recall@1 | 0.666 |
cosine_recall@3 | 0.8842 |
cosine_recall@5 | 0.9313 |
cosine_recall@10 | 0.9672 |
cosine_ndcg@10 | 0.8278 |
cosine_mrr@10 | 0.7818 |
cosine_map@100 | 0.7835 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 46,338 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 11 tokens
- mean: 35.24 tokens
- max: 206 tokens
- min: 4 tokens
- mean: 193.39 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 How is materiality defined in the context of an entity's sustainability reporting as per QC 4?
QC 4. Materiality is an entity-specific aspect of relevance based on the nature or magnitude, or both, of the items to which the information relates, as assessed in the context of the undertaking’s sustainability reporting (see chapter 3 of this Standard).
Faithful representation
QC 5. To be useful, the information must not only represent relevant phenomena, it must also faithfully represent the substance of the phenomena that it purports to represent. Faithful representation requires information to be (i) complete, (ii) neutral and (iii) accurate.What procedure must be followed for the adoption of implementing acts as mentioned in the text?
Those implementing acts shall be adopted in accordance with the examination procedure referred to in Article 22a(2).
3.
Articles 9, 9a and 10 shall apply to maritime transport activities in the same manner as they apply to other activities covered by the EU ETS with the following exception with regard to the application of Article 10.How should monitoring points be distributed for groundwater bodies that flow across Member State boundaries to effectively estimate groundwater flow?
The network shall include sufficient representative monitoring points to estimate the groundwater level in each groundwater body or group of bodies taking into account short and long-term variations in recharge and in particular:
— for groundwater bodies identified as being at risk of failing to achieve environmental objectives under Article 4, ensure sufficient density of monitoring points to assess the impact of abstractions and discharges on the groundwater level,
— for groundwater bodies within which groundwater flows across a Member State boundary, ensure sufficient monitoring points are provided to estimate the direction and rate of groundwater flow across the Member State boundary.
2.2.3. Monitoring frequency - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsmulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0.0863 | 500 | 0.938 | - |
0.1726 | 1000 | 0.2188 | - |
0.2589 | 1500 | 0.1998 | - |
0.3452 | 2000 | 0.2162 | 0.7843 |
0.4316 | 2500 | 0.1921 | - |
0.5179 | 3000 | 0.1749 | - |
0.6042 | 3500 | 0.1741 | - |
0.6905 | 4000 | 0.2007 | 0.7779 |
0.7768 | 4500 | 0.1456 | - |
0.8631 | 5000 | 0.1034 | - |
0.9494 | 5500 | 0.1285 | - |
1.0 | 5793 | - | 0.7806 |
1.0357 | 6000 | 0.1011 | 0.7879 |
1.1220 | 6500 | 0.065 | - |
1.2084 | 7000 | 0.0754 | - |
1.2947 | 7500 | 0.067 | - |
1.3810 | 8000 | 0.059 | 0.7953 |
1.4673 | 8500 | 0.0644 | - |
1.5536 | 9000 | 0.0705 | - |
1.6399 | 9500 | 0.0425 | - |
1.7262 | 10000 | 0.0515 | 0.8171 |
1.8125 | 10500 | 0.0358 | - |
1.8988 | 11000 | 0.0515 | - |
1.9852 | 11500 | 0.043 | - |
2.0 | 11586 | - | 0.8201 |
2.0715 | 12000 | 0.0257 | 0.8208 |
2.1578 | 12500 | 0.0343 | - |
2.2441 | 13000 | 0.0307 | - |
2.3304 | 13500 | 0.0324 | - |
2.4167 | 14000 | 0.0225 | 0.8236 |
2.5030 | 14500 | 0.0362 | - |
2.5893 | 15000 | 0.0255 | - |
2.6756 | 15500 | 0.0203 | - |
2.7620 | 16000 | 0.0244 | 0.8240 |
2.8483 | 16500 | 0.0461 | - |
2.9346 | 17000 | 0.0226 | - |
3.0 | 17379 | - | 0.8278 |
Framework Versions
- Python: 3.10.15
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu126
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 180
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for amentaphd/snowflake-artic-embed-l
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.666
- Cosine Accuracy@3 on Unknownself-reported0.884
- Cosine Accuracy@5 on Unknownself-reported0.931
- Cosine Accuracy@10 on Unknownself-reported0.967
- Cosine Precision@1 on Unknownself-reported0.666
- Cosine Precision@3 on Unknownself-reported0.295
- Cosine Precision@5 on Unknownself-reported0.186
- Cosine Precision@10 on Unknownself-reported0.097
- Cosine Recall@1 on Unknownself-reported0.666
- Cosine Recall@3 on Unknownself-reported0.884