# log dir | |
log_dir: /mntcephfs/lab_data/zhiyuanyan/benchmark_results/logs_final/spsl_4frames | |
# model setting | |
pretrained: ../weights/xception_best.pth # path to a pre-trained model, if using one | |
# pretrained: /home/tianshuoge/resnet34-b627a593.pth # path to a pre-trained model, if using one | |
model_name: spsl # model name | |
backbone_name: xception # backbone name | |
#backbone setting | |
backbone_config: | |
mode: original # shallow_xception | |
num_classes: 2 | |
inc: 4 | |
dropout: false | |
# dataset | |
all_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT, FaceShifter, DeepFakeDetection, Celeb-DF-v1, Celeb-DF-v2, DFDCP, DFDC, DeeperForensics-1.0, UADFV] | |
train_dataset: [FF-FS] | |
test_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT] | |
compression: c23 # compression-level for videos | |
train_batchSize: 32 # training batch size | |
test_batchSize: 32 # test batch size | |
workers: 8 # number of data loading workers | |
frame_num: {'train': 4, 'test': 32} # number of frames to use per video in training and testing | |
resolution: 256 # resolution of output image to network | |
with_mask: false # whether to include mask information in the input | |
with_landmark: false # whether to include facial landmark information in the input | |
save_ckpt: true # whether to save checkpoint | |
save_feat: true # whether to save features | |
# data augmentation | |
use_data_augmentation: true # Add this flag to enable/disable data augmentation | |
data_aug: | |
flip_prob: 0.5 | |
rotate_prob: 0.5 | |
rotate_limit: [-10, 10] | |
blur_prob: 0.5 | |
blur_limit: [3, 7] | |
brightness_prob: 0.5 | |
brightness_limit: [-0.1, 0.1] | |
contrast_limit: [-0.1, 0.1] | |
quality_lower: 40 | |
quality_upper: 100 | |
# mean and std for normalization | |
mean: [0.5, 0.5, 0.5] | |
std: [0.5, 0.5, 0.5] | |
# optimizer config | |
optimizer: | |
# choose between 'adam' and 'sgd' | |
type: adam | |
adam: | |
lr: 0.0002 # learning rate | |
beta1: 0.9 # beta1 for Adam optimizer | |
beta2: 0.999 # beta2 for Adam optimizer | |
eps: 0.00000001 # epsilon for Adam optimizer | |
weight_decay: 0.0005 # weight decay for regularization | |
amsgrad: false | |
sgd: | |
lr: 0.0002 # learning rate | |
momentum: 0.9 # momentum for SGD optimizer | |
weight_decay: 0.0005 # weight decay for regularization | |
# training config | |
lr_scheduler: null # learning rate scheduler | |
nEpochs: 10 # number of epochs to train for | |
start_epoch: 0 # manual epoch number (useful for restarts) | |
save_epoch: 1 # interval epochs for saving models | |
rec_iter: 100 # interval iterations for recording | |
logdir: ./logs # folder to output images and logs | |
manualSeed: 1024 # manual seed for random number generation | |
save_ckpt: false # whether to save checkpoint | |
# loss function | |
loss_func: cross_entropy # loss function to use | |
losstype: null | |
# metric | |
metric_scoring: auc # metric for evaluation (auc, acc, eer, ap) | |
# cuda | |
cuda: true # whether to use CUDA acceleration | |
cudnn: true # whether to use CuDNN for convolution operations | |