SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3 on the NLI, natural-questions, vitaminc, xsum, paws and global_dataset datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): AdvancedWeightedPooling(
    (mha): MultiheadAttention(
      (out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
    )
    (MLP): Sequential(
      (0): SwiGLUBlock(
        (in_proj_swish): Linear(in_features=1024, out_features=2048, bias=True)
        (in_proj_gate): Linear(in_features=1024, out_features=2048, bias=True)
      )
      (1): Dropout(p=0.05, inplace=False)
      (2): Linear(in_features=2048, out_features=1024, bias=True)
    )
    (layernorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/XLMRoBERTaM3-CustomPoolin-v1.02-1024dMLP-s1")
# Run inference
sentences = [
    'In mathematical astronomy , his fame is due to the introduction of the astronomical globe , and his early contributions to understanding the movement of the planets .',
    'His fame is due in mathematical astronomy to the introduction of the astronomical globe and to his early contributions to the understanding of the movement of the planets .',
    'In 1994 , Rodrigo Leão left the band to start a solo career , replaced by Carlos Maria Trindade ( keyboard synthesizer ) .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9061
spearman_cosine 0.9181

Binary Classification

Metric allNLI-dev Qnli-dev
cosine_accuracy 0.7734 0.7344
cosine_accuracy_threshold 0.669 0.6468
cosine_f1 0.7071 0.7153
cosine_f1_threshold 0.6514 0.5601
cosine_precision 0.625 0.6282
cosine_recall 0.814 0.8305
cosine_ap 0.6771 0.7422
cosine_mcc 0.5397 0.4191

Training Details

Training Datasets

NLI

NLI

  • Dataset: NLI at d43e6fe
  • Size: 750 training samples
  • Columns: anchor, entailment, and negative
  • Approximate statistics based on the first 750 samples:
    anchor entailment negative
    type string string string
    details
    • min: 5 tokens
    • mean: 24.9 tokens
    • max: 176 tokens
    • min: 5 tokens
    • mean: 16.4 tokens
    • max: 54 tokens
    • min: 6 tokens
    • mean: 16.53 tokens
    • max: 49 tokens
  • Samples:
    anchor entailment negative
    09:00 On Thursday, AT&T said they have teamed with Juniper Networks to develop a mobile security platform for both businesses and consumers. AT&T and Juniper to develop mobile security platform AT&T and Juniper disassemble mobile security platform
    two police motorcycles driving down the road in front of a cop car Two motorcycle cops and a police car on a street. No motorcycle cops and a police car on a street.
    I've told you about their size. I have told you about their size. I have not told you about their size.
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    
natural-questions

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 750 training samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 750 samples:
    sentence1 sentence2
    type string string
    details
    • min: 10 tokens
    • mean: 13.32 tokens
    • max: 25 tokens
    • min: 17 tokens
    • mean: 148.26 tokens
    • max: 651 tokens
  • Samples:
    sentence1 sentence2
    who is winner in bigg boss season 5 kannada Bigg Boss Kannada 5 Bigg Boss Kannada 5 (BBK5) was the fifth season of the Kannada television series Bigg Boss Kannada, that premiered on 15 October 2017.[1] Sudeep reprised his role as the host of the show.[2] The finale of the season took place 28 January 2018, and rapper Chandan Shetty was declared the winner of the show and the prize money of ₹50 lakh. Sales representative Diwaker was voted the runner-up.[3]
    what side of the street do they drive on in sweden Left- and right-hand traffic Sweden was LHT from about 1734 to 1967,[17] despite having land borders with RHT countries, and approximately 90 percent of cars being left-hand drive (LHD) vehicles.[18] A referendum was held in 1955, with an overwhelming majority voting against a change to RHT. Nevertheless, some years later the government ordered a conversion, which took place at 5 am on Sunday, 3 September 1967. The accident rate dropped sharply after the change,[19] but soon rose back to near its original level.[20] The day was known as Dagen H ("H-Day"), the 'H' being for Högertrafik or right traffic. When Iceland switched the following year, it was known as H-dagurinn, again meaning "H-Day".[21]
    what is the difference between mandelbrot and biscotti Mandelbrot (cookie) Its precise origin is unknown, as is its historic relationship with biscotti, a similar Italian cookie. While mandelbrot and biscotti both have a crunchy exterior, mandelbrot is slightly softer than biscotti due to its higher oil and/or butter content.
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    
vitaminc

vitaminc

  • Dataset: vitaminc at be6febb
  • Size: 370,653 training samples
  • Columns: claim and evidence
  • Approximate statistics based on the first 1000 samples:
    claim evidence
    type string string
    details
    • min: 9 tokens
    • mean: 20.44 tokens
    • max: 73 tokens
    • min: 9 tokens
    • mean: 44.61 tokens
    • max: 191 tokens
  • Samples:
    claim evidence
    The Script is a pop band . The Script are an Irish pop band formed in 2007 in Dublin , Ireland .
    Scott Skiles scored fewer than 55 points in home games . He set several records during high school , including most points in a home game ( 53 ) and most points in an away game ( 56 ) .
    The Black Cauldron was released before July 25 , 1985 . The film was distributed theatrically through Buena Vista Distribution on July 24 , 1985 .
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    
xsum

xsum

  • Dataset: xsum at 044020f
  • Size: 131,779 training samples
  • Columns: summary and document
  • Approximate statistics based on the first 1000 samples:
    summary document
    type string string
    details
    • min: 11 tokens
    • mean: 30.72 tokens
    • max: 62 tokens
    • min: 63 tokens
    • mean: 311.14 tokens
    • max: 550 tokens
  • Samples:
    summary document
    The amount of time spent needing daily care in late life has doubled in England over the past two decades, a study suggests. The Newcastle University study found men spent 2.4 years on average needing regular care and women three years.
    This includes everything from help with washing and dressing each day to round-the-clock care.
    Researchers said it suggested there needed to be a sharp increase in the number of care home places to cope.
    It comes as ministers consider a new way to fund the system.
    The government has promised major reform amid reports that councils are struggling to provide enough support to cope with the ageing population.
    The latest research, published in the Lancet, looked at not just the growth in the numbers of older people but also how many of those years were spent needing daily care.
    Between 1991 and 2011, life expectancy increased by more than four years for both men and women to 82.6 and 85.6 respectively.
    But the number of those years spent with substantial care needs rose much more rapidly, from 1.1 to 2.4 for men and 1.6 to three for women.
    Looking ahead to 2025, it means there wi...
    A man has admitted sexually assaulting two women in the same street two months apart. Craig Perkins had initially denied being involved in the attacks in Bournemouth's Boundary Road in September and December of last year.
    But on Wednesday at Bournemouth Crown Court he pleaded guilty to two counts of sexual assault.
    The 29-year-old, of Victoria Park Road, Bournemouth, has been remanded in custody and will be sentenced on 5 May.
    Police said the victims were both in their 20s - the first was assaulted on Tuesday 13 September and the second attack happened on Thursday 24 November.
    Perkins was arrested on 14 December.
    Det Ch Insp Sarah Derbyshire, of Dorset Police's major crime investigation team, said: "Stranger sex attacks such as these are very rare in Dorset and we are committed toward investigating them thoroughly and bringing the offender to justice.
    "The victims in this case have been updated about Perkins' guilty pleas and I would like to pay tribute to them for having the confidence to report these offences to Dorset Police and the assistance they have given to the ...
    Durham produced a below-par batting display as they lost by seven wickets to Worcestershire in the One-Day Cup. A 22 overs-a-side game was all that was possible after a long rain delay, but the home side were bowled out for 90.
    Mark Stoneman top-scored with 29 and the only other batsman to reach double figures was Paul Collingwood (17).
    Chris Rushworth took 3-19 as the visitors began their reply, but Alexei Kervezee (37) and Brett D'Oliveira (20) saw them to 91-3 with 17 balls in hand.
    Their unbroken partnership was worth 60 after Kervezee collected the winning single from the bowling of Usman Arshad.
    Durham reached 35-1 at the start of their innings after play got under way at 15:30 BST, but then lost four wickets for 11 runs.
    D'Oliveira, Ed Barnard, Joe Leach and Chris Russell took two wickets each as they were finally dismissed at the start of the 22nd over.
    Durham's total was their seventh-lowest in non-Twenty20 limited-overs matches games.
    Rushworth exploited the conditions superbly at the start of Worcestershire's innings, but once he was out of the attack, Kervezee and D'Oliveira were abl...
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    
paws

paws

  • Dataset: paws at 161ece9
  • Size: 49,401 training samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2
    type string string
    details
    • min: 12 tokens
    • mean: 30.94 tokens
    • max: 56 tokens
    • min: 11 tokens
    • mean: 30.97 tokens
    • max: 55 tokens
  • Samples:
    sentence1 sentence2
    Charley Frazier ( born August 12 , 1939 in Houston , Texas ) is a former American Football Wide Receiver from the NFL and the American Football League . Charley Frazier ( born August 12 , 1939 in Houston , Texas ) is a former American football receiver in the American Football League and the NFL .
    Indonesian dumplings were influenced and brought by Chinese immigrants to Indonesia . Indonesian dumplings were influenced and brought to Indonesia by Chinese immigrants .
    The SSSI has an area of 190.3 hectares , while the SAC has 168.3 hectares . The SSSI has an area of 190.3 hectares while the SAC covers 168.3 hectares .
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    
global_dataset

global_dataset

  • Dataset: global_dataset
  • Size: 71,250 training samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2
    type string string
    details
    • min: 7 tokens
    • mean: 24.45 tokens
    • max: 115 tokens
    • min: 6 tokens
    • mean: 106.19 tokens
    • max: 564 tokens
  • Samples:
    sentence1 sentence2
    Taobao is a Chinese online shopping site similar to eBay , Amazon and Rakuten , which is operated by Alibaba Group in Hangzhou , Zhejiang . Taobao is a Chinese online shopping website similar to eBay , Amazon and Rakuten , which is operated in Hangzhou , Zhejiang by Alibaba Group .
    Because of the lack of wood , boats were bundled with made papyrus reeds . Because of the lack of wood , boats with papyrus reeds were bundled .
    New Zealand leg-spinner Ish Sodhi hopes his stint playing in Nottinghamshire's T20 campaign this summer will lead to a longer stay in England. The 24-year-old has played 41 international matches in all formats.
    He has been particularly effective in T20, with 21 wickets at 14.47 and a strike-rate of a wicket every 13 balls.
    "In the last year or so I have definitely been a lot more successful in the T20 stuff than in the other stuff," he told BBC Radio Nottingham.
    "But in the last six months I have been finding my way in the four-stuff and one-dayers.
    "In the future I would love to come over and play all the forms. At this stage the T20 is the main focus. It is still a wee, wee way away but I will continue to look to hone my T20 skills and try to be in tip-top condition when I come over."
    Sodhi says playing in England is a "great opportunity" with the 2019 World Cup in mind.
    "It's great to play at these grounds where I will potentially play a World Cup, which I am targeting," he said.
    "It will be great to get used to conditions. The opportunity came up and I will try to grab it with both hands."
    Sodhi will be the second of two ...
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    

Evaluation Datasets

NLI

NLI

  • Dataset: NLI at d43e6fe
  • Size: 85 evaluation samples
  • Columns: anchor, entailment, and negative
  • Approximate statistics based on the first 85 samples:
    anchor entailment negative
    type string string string
    details
    • min: 9 tokens
    • mean: 17.02 tokens
    • max: 36 tokens
    • min: 6 tokens
    • mean: 12.96 tokens
    • max: 25 tokens
    • min: 6 tokens
    • mean: 13.53 tokens
    • max: 26 tokens
  • Samples:
    anchor entailment negative
    The girls walk down the street. Girls walk down the street. Girls do not walk down the street.
    Two computers sitting on top of a desk. A laptop computer and a desktop computer on a white desk A laptop computer and a desktop computer on a black desk
    A bathroom with a toilette with it's seat down. A bathroom with a sink and a toilet A bathroom without a sink or a toilet
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    
natural-questions

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 113 evaluation samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 113 samples:
    sentence1 sentence2
    type string string
    details
    • min: 10 tokens
    • mean: 13.57 tokens
    • max: 23 tokens
    • min: 34 tokens
    • mean: 176.3 tokens
    • max: 2497 tokens
  • Samples:
    sentence1 sentence2
    kiss him not me where does the anime end in the manga Kiss Him, Not Me Kiss Him, Not Me, known in Japan as Watashi ga Motete Dōsunda (Japanese: 私がモテてどうすんだ, Hepburn: lit. What's the Point of Me Getting Popular?), is a Japanese romantic comedy shōjo manga series written and illustrated by Junko.[2] It is published by Kodansha since 2013 on Bessatsu Friend magazine.[3] Twelve volumes compiling the chapters have been released so far.[2] It is published online in English by Crunchyroll and the volumes will be published by Kodansha USA.[3] An audio drama adaptation of the first chapter was released on January 13, 2015.[4] An anime adaptation by Brain's Base aired in Japan between October and December 2016.[5][6] The manga won Best Shōjo Manga at the 40th Kodansha Manga Awards.
    who sings i just want to use your love Your Love (The Outfield song) "Your Love" is a song by the English rock band the Outfield, taken from their debut album Play Deep (1985). The song was penned by the band's guitarist John Spinks.
    how many episodes of westworld are in season 1 Westworld (season 1) The first season of the American science fiction western television series Westworld (subtitled The Maze) premiered on HBO on October 2, 2016, and concluded on December 4, 2016. It consisted of ten episodes, each running approximately 60 minutes in length and was broadcast on Sundays in the United States. The complete first season was released on home media on November 7, 2017.
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    
vitaminc

vitaminc

  • Dataset: vitaminc at be6febb
  • Size: 63,054 evaluation samples
  • Columns: claim and evidence
  • Approximate statistics based on the first 1000 samples:
    claim evidence
    type string string
    details
    • min: 10 tokens
    • mean: 22.35 tokens
    • max: 48 tokens
    • min: 11 tokens
    • mean: 37.94 tokens
    • max: 75 tokens
  • Samples:
    claim evidence
    More than 273 people have died from the 2019-20 coronavirus outside mainland China . More than 3,200 people have died : almost 3,000 in mainland China and around 275 in other countries .
    More than 146,500 people have been infected with coronavirus globally , during the 2019�20 pandemic . more than 147,000 cases have been confirmed worldwide .
    Over 278,000 coronavirus cases had been confirmed around the world by March 21 , 2020 . As of 21 March , more than 278,000 cases of COVID-19 have been reported in over 186 countries and territories , resulting in more than 11,500 deaths and 92,000 recoveries. virus seems to mostly spread between people via respiratory droplets .
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    
xsum

xsum

  • Dataset: xsum at 044020f
  • Size: 131,779 evaluation samples
  • Columns: summary and document
  • Approximate statistics based on the first 1000 samples:
    summary document
    type string string
    details
    • min: 17 tokens
    • mean: 30.71 tokens
    • max: 43 tokens
    • min: 70 tokens
    • mean: 305.77 tokens
    • max: 543 tokens
  • Samples:
    summary document
    A new species of moss has been found growing on 10 maple trees in a Carmarthenshire car park, but experts are in two minds about its origins. Welsh Bristle-moss was discovered near Dryslwyn Castle, close to Llandeilo, by the Countryside Council for Wales.
    It said it might have evolved from a genetically similar moss.
    But it could be an undiscovered species that was imported from the Continent on maples used to landscape the car park in the 1990s.
    There are about 900 species of moss in Britain and 587 of those are found in Wales.
    The Welsh Bristle-moss was discovered during a survey which is recording mosses growing on trees in south Wales.
    Experts said the moss had a unique combination of distinctive traits. It differed from related mosses because of its round-tipped leaf tips and flat leaf edges.
    Countryside Council for Wales (CCW) moss ecologist Sam Bosanquet, who made the new find, said: "Welsh Bristle-moss highlights the need to be ever vigilant and open-minded, even when looking at plants in mundane places like car parks.
    "This is a high-point in our regular work of recording mosses which grow on trees in south Wales.
    "...
    A former Soviet army officer has been convicted by a US jury of planning and leading a Taliban attack on American forces in Afghanistan in 2009. The jury found Irek Hamidullin guilty on 15 counts, including supporting terrorists and conspiracy to use a weapon of mass destruction.
    The 55-year-old is the first military prisoner from Afghanistan to be tried in a US federal court.
    Some of the charges carry a mandatory life sentence.
    About 30 insurgents died in the attack, with Hamidullin the only survivor, while no American or Afghan soldiers were killed.
    Hamidullin, who did not testify during the trial, is expected to be sentenced on 6 November.
    Lawyers say it is unusual for someone captured on the battlefield in Afghanistan to be transferred to the United States for trial in a federal court.
    Hamidullin's defence lawyers had tried unsuccessfully to have the charges dismissed, saying their client was a prisoner of war and ineligible for trial in civilian court.
    Prosecutors argued federal law protected US soldiers no matter where they were.
    The jury in Richmond. Virginia, reached its verdict after five days of testimony and eight ho...
    UK troops could be deployed to train moderate Syrian rebels in the fight against Islamic State militants (IS), the defence secretary has said. Michael Fallon told BBC News that UK troops could be sent to a country neighbouring Syria, possibly Jordan.
    He insisted however that UK forces would not engage in direct combat.
    The US is leading efforts to train a Syrian opposition to fight IS, also known as ISIS, which has captured large parts of of the country.
    The country's National Security Adviser Susan Rice said a deal had been reached with Turkey to allow the US to train Syrian rebels on its soil, although this has been denied by Turkish officials.
    Mr Fallon discussed the possibility of launching training operations, while visiting the Royal Fleet Auxiliary Ship, Argus, in Falmouth.
    A specialist team of 12 soldiers from the Yorkshire Regiment is already training Kurdish fighters in Iraq to use UK-supplied heavy machine guns.
    And the UK is to fund bomb disposal training for the Kurdish Peshmerga forces to counter the threat of Improvised Explosive Devices (IEDs), Foreign Secretary Philip Hammond announced on Monday.
    The Prime Mi...
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    
paws

paws

  • Dataset: paws at 161ece9
  • Size: 8,000 evaluation samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2
    type string string
    details
    • min: 11 tokens
    • mean: 31.67 tokens
    • max: 56 tokens
    • min: 10 tokens
    • mean: 31.33 tokens
    • max: 54 tokens
  • Samples:
    sentence1 sentence2
    He also wrote a large number of vocal arrangements and orchestral accompaniments to varieties . He also wrote a large number of vocal arrangements and orchestral accompaniments for varieties .
    In 1994 , Rodrigo Leão left the band to start a solo career , being replaced by Carlos Maria Trindade ( keyboard synthesizer ) . In 1994 , Rodrigo Leão left the band to start a solo career , replaced by Carlos Maria Trindade ( keyboard synthesizer ) .
    Until 1951 , he was active as a socialist in post-war legislation when he decided to focus on local politics . He was active as a socialist in the post-war legislature until 1951 , when he decided to focus on local politics .
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    
global_dataset

global_dataset

  • Dataset: global_dataset
  • Size: 256 evaluation samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 256 samples:
    sentence1 sentence2
    type string string
    details
    • min: 10 tokens
    • mean: 23.68 tokens
    • max: 51 tokens
    • min: 6 tokens
    • mean: 112.38 tokens
    • max: 511 tokens
  • Samples:
    sentence1 sentence2
    All babies born from Tuesday across the UK will have an anti-hepatitis B injection added to the other routine vaccinations they are given in their early life. The jab protects against viral infections that cause cirrhosis and liver cancer.
    Babies are already vaccinated against diphtheria, tetanus, whooping cough, Hib and polio.
    Public Health England said the new vaccine had been "shown to be safe".
    Babies are currently given vaccinations when they are eight, 12 and 16 weeks old and the new injection will be given at the same time as the others.
    Previously, the hepatitis B vaccine was available on the NHS as a separate jab and was only administered to infants considered at risk, such as those born to infected mothers.
    While hepatitis B rates in the UK are generally very low, in some inner city areas up to 1% of antenatal women are infected.
    The infection has no symptoms so many of these women will be unaware they are ill, while their babies are considered at high risk.
    Mary Ramsay, head of immunisation at Public Health England, said: "The Hexavalent vaccine has been extensively tested and shown to be safe and is widely used internationally wi...
    A black man in a long sleeves white collared shirt and a tie is walking to work in a big city. The man is wearing work attire and is walking to his job.
    ACVM is based in Glasgow and has offices in Edinburgh , Aberdeen , Newcastle , Manchester and Milton Keynes . ACVM is based in Glasgow and has subsidiaries in Edinburgh , Aberdeen , Newcastle , Manchester and Milton Keynes .
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.02}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 192
  • per_device_eval_batch_size: 256
  • learning_rate: 0.0001
  • weight_decay: 0.001
  • lr_scheduler_type: cosine_with_min_lr
  • lr_scheduler_kwargs: {'num_cycles': 0.5, 'min_lr': 3.3333333333333335e-05}
  • warmup_ratio: 0.15
  • save_safetensors: False
  • fp16: True
  • remove_unused_columns: False
  • push_to_hub: True
  • hub_model_id: bobox/XLMRoBERTaM3-CustomPoolin-v1.02-1024dMLP-s1-checkpoints-tmp
  • hub_strategy: all_checkpoints
  • hub_private_repo: False
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 192
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.001
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine_with_min_lr
  • lr_scheduler_kwargs: {'num_cycles': 0.5, 'min_lr': 3.3333333333333335e-05}
  • warmup_ratio: 0.15
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: False
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: False
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: bobox/XLMRoBERTaM3-CustomPoolin-v1.02-1024dMLP-s1-checkpoints-tmp
  • hub_strategy: all_checkpoints
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss NLI loss natural-questions loss vitaminc loss xsum loss paws loss global dataset loss sts-test_spearman_cosine allNLI-dev_cosine_ap Qnli-dev_cosine_ap
0.0026 1 0.7912 - - - - - - - - -
0.0051 2 3.5781 - - - - - - - - -
0.0077 3 0.8711 - - - - - - - - -
0.0102 4 0.9923 - - - - - - - - -
0.0128 5 0.6723 - - - - - - - - -
0.0153 6 1.0542 - - - - - - - - -
0.0179 7 0.8721 - - - - - - - - -
0.0204 8 0.8121 - - - - - - - - -
0.0230 9 0.9226 - - - - - - - - -
0.0255 10 0.7534 - - - - - - - - -
0.0281 11 0.9769 - - - - - - - - -
0.0306 12 1.1295 - - - - - - - - -
0.0332 13 0.9773 - - - - - - - - -
0.0357 14 0.7239 - - - - - - - - -
0.0383 15 0.6364 - - - - - - - - -
0.0408 16 0.7573 - - - - - - - - -
0.0434 17 0.7629 - - - - - - - - -
0.0459 18 0.8665 - - - - - - - - -
0.0485 19 0.6049 - - - - - - - - -
0.0510 20 0.6587 - - - - - - - - -
0.0536 21 0.5717 - - - - - - - - -
0.0561 22 0.4781 - - - - - - - - -
0.0587 23 0.4699 - - - - - - - - -
0.0612 24 1.7145 - - - - - - - - -
0.0638 25 0.531 - - - - - - - - -
0.0663 26 0.5584 - - - - - - - - -
0.0689 27 0.398 - - - - - - - - -
0.0714 28 0.5015 - - - - - - - - -
0.0740 29 0.4741 - - - - - - - - -
0.0765 30 0.3762 - - - - - - - - -
0.0791 31 0.6952 - - - - - - - - -
0.0816 32 0.2723 - - - - - - - - -
0.0842 33 0.4301 - - - - - - - - -
0.0867 34 0.3839 - - - - - - - - -
0.0893 35 0.3154 - - - - - - - - -
0.0918 36 0.2796 - - - - - - - - -
0.0944 37 0.2964 - - - - - - - - -
0.0969 38 0.2232 - - - - - - - - -
0.0995 39 0.2661 - - - - - - - - -
0.1020 40 0.3133 - - - - - - - - -
0.1046 41 0.2047 - - - - - - - - -
0.1071 42 0.2206 - - - - - - - - -
0.1097 43 0.1694 - - - - - - - - -
0.1122 44 0.1864 - - - - - - - - -
0.1148 45 0.2126 - - - - - - - - -
0.1173 46 0.1589 - - - - - - - - -
0.1199 47 0.2539 - - - - - - - - -
0.1224 48 0.2403 - - - - - - - - -
0.125 49 0.1666 - - - - - - - - -
0.1276 50 0.1633 - - - - - - - - -
0.1301 51 0.2204 - - - - - - - - -
0.1327 52 0.0716 - - - - - - - - -
0.1352 53 0.1254 - - - - - - - - -
0.1378 54 0.3478 - - - - - - - - -
0.1403 55 0.2607 - - - - - - - - -
0.1429 56 0.2158 - - - - - - - - -
0.1454 57 0.2082 - - - - - - - - -
0.1480 58 0.2334 - - - - - - - - -
0.1505 59 0.2203 0.9447 0.2167 2.4175 0.1710 0.0204 0.2824 0.9129 0.6641 0.7343
0.1531 60 0.1368 - - - - - - - - -
0.1556 61 0.2153 - - - - - - - - -
0.1582 62 0.0711 - - - - - - - - -
0.1607 63 0.2255 - - - - - - - - -
0.1633 64 0.0982 - - - - - - - - -
0.1658 65 0.1388 - - - - - - - - -
0.1684 66 0.1797 - - - - - - - - -
0.1709 67 0.4173 - - - - - - - - -
0.1735 68 0.0102 - - - - - - - - -
0.1760 69 0.0634 - - - - - - - - -
0.1786 70 0.1956 - - - - - - - - -
0.1811 71 0.2188 - - - - - - - - -
0.1837 72 0.1399 - - - - - - - - -
0.1862 73 0.1489 - - - - - - - - -
0.1888 74 0.1567 - - - - - - - - -
0.1913 75 0.2404 - - - - - - - - -
0.1939 76 0.1295 - - - - - - - - -
0.1964 77 0.4541 - - - - - - - - -
0.1990 78 0.2364 - - - - - - - - -
0.2015 79 0.0929 - - - - - - - - -
0.2041 80 0.1699 - - - - - - - - -
0.2066 81 0.1846 - - - - - - - - -
0.2092 82 0.1126 - - - - - - - - -
0.2117 83 0.1151 - - - - - - - - -
0.2143 84 0.2015 - - - - - - - - -
0.2168 85 0.1028 - - - - - - - - -
0.2194 86 0.2284 - - - - - - - - -
0.2219 87 0.1368 - - - - - - - - -
0.2245 88 0.0836 - - - - - - - - -
0.2270 89 0.1276 - - - - - - - - -
0.2296 90 0.181 - - - - - - - - -
0.2321 91 0.1516 - - - - - - - - -
0.2347 92 0.1769 - - - - - - - - -
0.2372 93 0.1261 - - - - - - - - -
0.2398 94 0.2324 - - - - - - - - -
0.2423 95 0.1046 - - - - - - - - -
0.2449 96 0.1372 - - - - - - - - -
0.2474 97 0.0654 - - - - - - - - -
0.25 98 0.2279 - - - - - - - - -
0.2526 99 0.0807 - - - - - - - - -
0.2551 100 0.123 - - - - - - - - -
0.2577 101 0.1464 - - - - - - - - -
0.2602 102 0.0897 - - - - - - - - -
0.2628 103 0.1612 - - - - - - - - -
0.2653 104 0.1289 - - - - - - - - -
0.2679 105 0.7234 - - - - - - - - -
0.2704 106 0.1004 - - - - - - - - -
0.2730 107 0.1227 - - - - - - - - -
0.2755 108 0.2446 - - - - - - - - -
0.2781 109 0.1338 - - - - - - - - -
0.2806 110 0.0427 - - - - - - - - -
0.2832 111 0.1149 - - - - - - - - -
0.2857 112 0.1524 - - - - - - - - -
0.2883 113 0.1308 - - - - - - - - -
0.2908 114 0.192 - - - - - - - - -
0.2934 115 0.141 - - - - - - - - -
0.2959 116 0.1539 - - - - - - - - -
0.2985 117 0.1548 - - - - - - - - -
0.3010 118 0.1284 0.8682 0.1388 2.3304 0.1062 0.0200 0.2694 0.9151 0.6651 0.7364
0.3036 119 0.0939 - - - - - - - - -
0.3061 120 0.2675 - - - - - - - - -
0.3087 121 0.1542 - - - - - - - - -
0.3112 122 0.1347 - - - - - - - - -
0.3138 123 0.1285 - - - - - - - - -
0.3163 124 0.1025 - - - - - - - - -
0.3189 125 0.0879 - - - - - - - - -
0.3214 126 0.0446 - - - - - - - - -
0.3240 127 0.1739 - - - - - - - - -
0.3265 128 0.1309 - - - - - - - - -
0.3291 129 0.1737 - - - - - - - - -
0.3316 130 0.1063 - - - - - - - - -
0.3342 131 0.0568 - - - - - - - - -
0.3367 132 0.1966 - - - - - - - - -
0.3393 133 0.2336 - - - - - - - - -
0.3418 134 0.1716 - - - - - - - - -
0.3444 135 0.0979 - - - - - - - - -
0.3469 136 0.1319 - - - - - - - - -
0.3495 137 0.1058 - - - - - - - - -
0.3520 138 0.225 - - - - - - - - -
0.3546 139 0.1045 - - - - - - - - -
0.3571 140 0.1066 - - - - - - - - -
0.3597 141 0.1234 - - - - - - - - -
0.3622 142 0.1707 - - - - - - - - -
0.3648 143 0.1204 - - - - - - - - -
0.3673 144 0.2086 - - - - - - - - -
0.3699 145 0.0982 - - - - - - - - -
0.3724 146 0.0937 - - - - - - - - -
0.375 147 0.1763 - - - - - - - - -
0.3776 148 0.0601 - - - - - - - - -
0.3801 149 0.1354 - - - - - - - - -
0.3827 150 0.1135 - - - - - - - - -
0.3852 151 0.2146 - - - - - - - - -
0.3878 152 0.0868 - - - - - - - - -
0.3903 153 0.2428 - - - - - - - - -
0.3929 154 0.0582 - - - - - - - - -
0.3954 155 0.1299 - - - - - - - - -
0.3980 156 0.0911 - - - - - - - - -
0.4005 157 0.1184 - - - - - - - - -
0.4031 158 0.0692 - - - - - - - - -
0.4056 159 0.1228 - - - - - - - - -
0.4082 160 0.0574 - - - - - - - - -
0.4107 161 0.0822 - - - - - - - - -
0.4133 162 0.1071 - - - - - - - - -
0.4158 163 0.0544 - - - - - - - - -
0.4184 164 0.1261 - - - - - - - - -
0.4209 165 0.094 - - - - - - - - -
0.4235 166 0.1539 - - - - - - - - -
0.4260 167 0.045 - - - - - - - - -
0.4286 168 0.1074 - - - - - - - - -
0.4311 169 0.1626 - - - - - - - - -
0.4337 170 0.1337 - - - - - - - - -
0.4362 171 0.1737 - - - - - - - - -
0.4388 172 0.104 - - - - - - - - -
0.4413 173 0.0989 - - - - - - - - -
0.4439 174 0.2015 - - - - - - - - -
0.4464 175 0.1364 - - - - - - - - -
0.4490 176 0.0968 - - - - - - - - -
0.4515 177 0.0868 0.8198 0.0984 2.3936 0.0804 0.0204 0.2730 0.9166 0.6676 0.7384
0.4541 178 0.0538 - - - - - - - - -
0.4566 179 0.0855 - - - - - - - - -
0.4592 180 0.1492 - - - - - - - - -
0.4617 181 0.0799 - - - - - - - - -
0.4643 182 0.0979 - - - - - - - - -
0.4668 183 0.087 - - - - - - - - -
0.4694 184 0.1763 - - - - - - - - -
0.4719 185 0.1646 - - - - - - - - -
0.4745 186 0.1483 - - - - - - - - -
0.4770 187 0.1098 - - - - - - - - -
0.4796 188 0.6778 - - - - - - - - -
0.4821 189 0.116 - - - - - - - - -
0.4847 190 0.1465 - - - - - - - - -
0.4872 191 0.1113 - - - - - - - - -
0.4898 192 0.1467 - - - - - - - - -
0.4923 193 0.0744 - - - - - - - - -
0.4949 194 0.1342 - - - - - - - - -
0.4974 195 0.0979 - - - - - - - - -
0.5 196 0.1969 - - - - - - - - -
0.5026 197 0.1349 - - - - - - - - -
0.5051 198 0.1122 - - - - - - - - -
0.5077 199 0.1032 - - - - - - - - -
0.5102 200 0.0757 - - - - - - - - -
0.5128 201 0.5715 - - - - - - - - -
0.5153 202 0.0359 - - - - - - - - -
0.5179 203 0.0845 - - - - - - - - -
0.5204 204 0.0776 - - - - - - - - -
0.5230 205 0.154 - - - - - - - - -
0.5255 206 0.0553 - - - - - - - - -
0.5281 207 0.0871 - - - - - - - - -
0.5306 208 0.1214 - - - - - - - - -
0.5332 209 0.1983 - - - - - - - - -
0.5357 210 0.1244 - - - - - - - - -
0.5383 211 0.0517 - - - - - - - - -
0.5408 212 0.1522 - - - - - - - - -
0.5434 213 0.0749 - - - - - - - - -
0.5459 214 0.0966 - - - - - - - - -
0.5485 215 0.1224 - - - - - - - - -
0.5510 216 0.2397 - - - - - - - - -
0.5536 217 0.0847 - - - - - - - - -
0.5561 218 0.0252 - - - - - - - - -
0.5587 219 0.1269 - - - - - - - - -
0.5612 220 0.1205 - - - - - - - - -
0.5638 221 0.046 - - - - - - - - -
0.5663 222 0.0701 - - - - - - - - -
0.5689 223 0.1206 - - - - - - - - -
0.5714 224 0.059 - - - - - - - - -
0.5740 225 0.1602 - - - - - - - - -
0.5765 226 0.098 - - - - - - - - -
0.5791 227 0.0658 - - - - - - - - -
0.5816 228 0.0755 - - - - - - - - -
0.5842 229 0.1011 - - - - - - - - -
0.5867 230 0.1612 - - - - - - - - -
0.5893 231 0.0268 - - - - - - - - -
0.5918 232 0.0478 - - - - - - - - -
0.5944 233 0.0741 - - - - - - - - -
0.5969 234 0.0985 - - - - - - - - -
0.5995 235 0.0736 - - - - - - - - -
0.6020 236 0.1142 0.7994 0.1305 2.3555 0.0615 0.0213 0.2741 0.9172 0.6767 0.7332
0.6046 237 0.1271 - - - - - - - - -
0.6071 238 0.061 - - - - - - - - -
0.6097 239 0.0756 - - - - - - - - -
0.6122 240 0.0948 - - - - - - - - -
0.6148 241 0.1604 - - - - - - - - -
0.6173 242 0.0668 - - - - - - - - -
0.6199 243 0.0386 - - - - - - - - -
0.6224 244 0.1708 - - - - - - - - -
0.625 245 0.0829 - - - - - - - - -
0.6276 246 0.1878 - - - - - - - - -
0.6301 247 0.1039 - - - - - - - - -
0.6327 248 0.064 - - - - - - - - -
0.6352 249 0.106 - - - - - - - - -
0.6378 250 0.1597 - - - - - - - - -
0.6403 251 0.4868 - - - - - - - - -
0.6429 252 0.1583 - - - - - - - - -
0.6454 253 0.0839 - - - - - - - - -
0.6480 254 0.071 - - - - - - - - -
0.6505 255 0.1673 - - - - - - - - -
0.6531 256 0.5533 - - - - - - - - -
0.6556 257 0.1301 - - - - - - - - -
0.6582 258 0.085 - - - - - - - - -
0.6607 259 0.0545 - - - - - - - - -
0.6633 260 0.0408 - - - - - - - - -
0.6658 261 0.6112 - - - - - - - - -
0.6684 262 0.1493 - - - - - - - - -
0.6709 263 0.1581 - - - - - - - - -
0.6735 264 0.2356 - - - - - - - - -
0.6760 265 0.1972 - - - - - - - - -
0.6786 266 0.0527 - - - - - - - - -
0.6811 267 0.1335 - - - - - - - - -
0.6837 268 0.0674 - - - - - - - - -
0.6862 269 0.0656 - - - - - - - - -
0.6888 270 0.0622 - - - - - - - - -
0.6913 271 0.2093 - - - - - - - - -
0.6939 272 0.0605 - - - - - - - - -
0.6964 273 0.117 - - - - - - - - -
0.6990 274 0.0991 - - - - - - - - -
0.7015 275 0.1294 - - - - - - - - -
0.7041 276 0.0482 - - - - - - - - -
0.7066 277 0.062 - - - - - - - - -
0.7092 278 0.1289 - - - - - - - - -
0.7117 279 0.103 - - - - - - - - -
0.7143 280 0.1764 - - - - - - - - -
0.7168 281 0.1517 - - - - - - - - -
0.7194 282 0.128 - - - - - - - - -
0.7219 283 0.1119 - - - - - - - - -
0.7245 284 0.0813 - - - - - - - - -
0.7270 285 0.0525 - - - - - - - - -
0.7296 286 0.1221 - - - - - - - - -
0.7321 287 0.0645 - - - - - - - - -
0.7347 288 0.1155 - - - - - - - - -
0.7372 289 0.0854 - - - - - - - - -
0.7398 290 0.0759 - - - - - - - - -
0.7423 291 0.0795 - - - - - - - - -
0.7449 292 0.0842 - - - - - - - - -
0.7474 293 0.1039 - - - - - - - - -
0.75 294 0.0525 - - - - - - - - -
0.7526 295 0.0807 0.8120 0.0891 2.4979 0.0711 0.0203 0.2989 0.9157 0.6781 0.7280
0.7551 296 0.059 - - - - - - - - -
0.7577 297 0.1255 - - - - - - - - -
0.7602 298 0.075 - - - - - - - - -
0.7628 299 0.0668 - - - - - - - - -
0.7653 300 0.1193 - - - - - - - - -
0.7679 301 0.0539 - - - - - - - - -
0.7704 302 0.0465 - - - - - - - - -
0.7730 303 0.0324 - - - - - - - - -
0.7755 304 0.0797 - - - - - - - - -
0.7781 305 0.1331 - - - - - - - - -
0.7806 306 0.0831 - - - - - - - - -
0.7832 307 0.1194 - - - - - - - - -
0.7857 308 0.1545 - - - - - - - - -
0.7883 309 0.1273 - - - - - - - - -
0.7908 310 0.0925 - - - - - - - - -
0.7934 311 0.1217 - - - - - - - - -
0.7959 312 0.0549 - - - - - - - - -
0.7985 313 0.1441 - - - - - - - - -
0.8010 314 0.1327 - - - - - - - - -
0.8036 315 0.0495 - - - - - - - - -
0.8061 316 0.0473 - - - - - - - - -
0.8087 317 0.1109 - - - - - - - - -
0.8112 318 0.1102 - - - - - - - - -
0.8138 319 0.0674 - - - - - - - - -
0.8163 320 0.1076 - - - - - - - - -
0.8189 321 0.076 - - - - - - - - -
0.8214 322 0.0899 - - - - - - - - -
0.8240 323 0.0539 - - - - - - - - -
0.8265 324 0.0516 - - - - - - - - -
0.8291 325 0.0607 - - - - - - - - -
0.8316 326 0.1574 - - - - - - - - -
0.8342 327 0.1324 - - - - - - - - -
0.8367 328 0.094 - - - - - - - - -
0.8393 329 0.0861 - - - - - - - - -
0.8418 330 0.0991 - - - - - - - - -
0.8444 331 0.03 - - - - - - - - -
0.8469 332 0.0785 - - - - - - - - -
0.8495 333 0.1042 - - - - - - - - -
0.8520 334 0.0184 - - - - - - - - -
0.8546 335 0.033 - - - - - - - - -
0.8571 336 0.0593 - - - - - - - - -
0.8597 337 0.0798 - - - - - - - - -
0.8622 338 0.0746 - - - - - - - - -
0.8648 339 0.0629 - - - - - - - - -
0.8673 340 0.0401 - - - - - - - - -
0.8699 341 0.2941 - - - - - - - - -
0.8724 342 0.0796 - - - - - - - - -
0.875 343 0.0661 - - - - - - - - -
0.8776 344 0.1058 - - - - - - - - -
0.8801 345 0.1774 - - - - - - - - -
0.8827 346 0.1408 - - - - - - - - -
0.8852 347 0.0373 - - - - - - - - -
0.8878 348 0.0758 - - - - - - - - -
0.8903 349 0.0997 - - - - - - - - -
0.8929 350 0.045 - - - - - - - - -
0.8954 351 0.0246 - - - - - - - - -
0.8980 352 0.0645 - - - - - - - - -
0.9005 353 0.1046 - - - - - - - - -
0.9031 354 0.0857 0.8229 0.1095 2.6739 0.0849 0.0206 0.3026 0.9160 0.6698 0.7347
0.9056 355 0.1487 - - - - - - - - -
0.9082 356 0.0759 - - - - - - - - -
0.9107 357 0.1082 - - - - - - - - -
0.9133 358 0.1135 - - - - - - - - -
0.9158 359 0.1303 - - - - - - - - -
0.9184 360 0.0862 - - - - - - - - -
0.9209 361 0.0763 - - - - - - - - -
0.9235 362 0.0839 - - - - - - - - -
0.9260 363 0.0715 - - - - - - - - -
0.9286 364 0.0517 - - - - - - - - -
0.9311 365 0.0902 - - - - - - - - -
0.9337 366 0.0296 - - - - - - - - -
0.9362 367 0.1111 - - - - - - - - -
0.9388 368 0.0777 - - - - - - - - -
0.9413 369 0.0655 - - - - - - - - -
0.9439 370 0.0833 - - - - - - - - -
0.9464 371 0.0711 - - - - - - - - -
0.9490 372 0.0473 - - - - - - - - -
0.9515 373 0.0376 - - - - - - - - -
0.9541 374 0.0859 - - - - - - - - -
0.9566 375 0.0958 - - - - - - - - -
0.9592 376 0.0709 - - - - - - - - -
0.9617 377 0.0674 - - - - - - - - -
0.9643 378 0.0601 - - - - - - - - -
0.9668 379 0.0953 - - - - - - - - -
0.9694 380 0.069 - - - - - - - - -
0.9719 381 0.0953 - - - - - - - - -
0.9745 382 0.1069 - - - - - - - - -
0.9770 383 0.149 - - - - - - - - -
0.9796 384 0.1037 - - - - - - - - -
0.9821 385 0.0856 - - - - - - - - -
0.9847 386 0.0465 - - - - - - - - -
0.9872 387 0.1756 - - - - - - - - -
0.9898 388 0.0972 - - - - - - - - -
0.9923 389 0.0868 - - - - - - - - -
0.9949 390 0.1441 - - - - - - - - -
0.9974 391 0.1154 - - - - - - - - -
1.0 392 0.0001 - - - - - - - - -
1.0026 393 0.0247 - - - - - - - - -
1.0051 394 0.0772 - - - - - - - - -
1.0077 395 0.078 - - - - - - - - -
1.0102 396 0.0985 - - - - - - - - -
1.0128 397 0.0509 - - - - - - - - -
1.0153 398 0.0791 - - - - - - - - -
1.0179 399 0.1297 - - - - - - - - -
1.0204 400 0.0549 - - - - - - - - -
1.0230 401 0.0274 - - - - - - - - -
1.0255 402 0.0626 - - - - - - - - -
1.0281 403 0.0627 - - - - - - - - -
1.0306 404 0.0085 - - - - - - - - -
1.0332 405 0.0883 - - - - - - - - -
1.0357 406 0.0261 - - - - - - - - -
1.0383 407 0.0662 - - - - - - - - -
1.0408 408 0.088 - - - - - - - - -
1.0434 409 0.0632 - - - - - - - - -
1.0459 410 0.0569 - - - - - - - - -
1.0485 411 0.0421 - - - - - - - - -
1.0510 412 0.2399 - - - - - - - - -
1.0536 413 0.04 0.7573 0.1220 2.5621 0.0854 0.0209 0.3192 0.9170 0.6756 0.7336
1.0561 414 0.0331 - - - - - - - - -
1.0587 415 0.0403 - - - - - - - - -
1.0612 416 0.1124 - - - - - - - - -
1.0638 417 0.0718 - - - - - - - - -
1.0663 418 0.0764 - - - - - - - - -
1.0689 419 0.1252 - - - - - - - - -
1.0714 420 0.0224 - - - - - - - - -
1.0740 421 0.0655 - - - - - - - - -
1.0765 422 0.0611 - - - - - - - - -
1.0791 423 0.0579 - - - - - - - - -
1.0816 424 0.0462 - - - - - - - - -
1.0842 425 0.1243 - - - - - - - - -
1.0867 426 0.0635 - - - - - - - - -
1.0893 427 0.0932 - - - - - - - - -
1.0918 428 0.0568 - - - - - - - - -
1.0944 429 0.0716 - - - - - - - - -
1.0969 430 0.0734 - - - - - - - - -
1.0995 431 0.0533 - - - - - - - - -
1.1020 432 0.0593 - - - - - - - - -
1.1046 433 0.0198 - - - - - - - - -
1.1071 434 0.0484 - - - - - - - - -
1.1097 435 0.0656 - - - - - - - - -
1.1122 436 0.0263 - - - - - - - - -
1.1148 437 0.0753 - - - - - - - - -
1.1173 438 0.0478 - - - - - - - - -
1.1199 439 0.0375 - - - - - - - - -
1.1224 440 0.0822 - - - - - - - - -
1.125 441 0.0826 - - - - - - - - -
1.1276 442 0.0906 - - - - - - - - -
1.1301 443 0.0251 - - - - - - - - -
1.1327 444 0.034 - - - - - - - - -
1.1352 445 0.0149 - - - - - - - - -
1.1378 446 0.063 - - - - - - - - -
1.1403 447 0.0517 - - - - - - - - -
1.1429 448 0.0727 - - - - - - - - -
1.1454 449 0.0699 - - - - - - - - -
1.1480 450 0.0464 - - - - - - - - -
1.1505 451 0.1634 - - - - - - - - -
1.1531 452 0.0829 - - - - - - - - -
1.1556 453 0.2674 - - - - - - - - -
1.1582 454 0.0963 - - - - - - - - -
1.1607 455 0.0111 - - - - - - - - -
1.1633 456 0.0748 - - - - - - - - -
1.1658 457 0.0923 - - - - - - - - -
1.1684 458 0.0283 - - - - - - - - -
1.1709 459 0.0436 - - - - - - - - -
1.1735 460 0.0331 - - - - - - - - -
1.1760 461 0.0698 - - - - - - - - -
1.1786 462 0.0591 - - - - - - - - -
1.1811 463 0.0543 - - - - - - - - -
1.1837 464 0.0914 - - - - - - - - -
1.1862 465 0.0533 - - - - - - - - -
1.1888 466 0.1107 - - - - - - - - -
1.1913 467 0.0687 - - - - - - - - -
1.1939 468 0.0373 - - - - - - - - -
1.1964 469 0.0398 - - - - - - - - -
1.1990 470 0.0373 - - - - - - - - -
1.2015 471 0.0779 - - - - - - - - -
1.2041 472 0.0196 0.8001 0.1346 2.3657 0.0731 0.0202 0.3437 0.9159 0.6761 0.7325
1.2066 473 0.0459 - - - - - - - - -
1.2092 474 0.0984 - - - - - - - - -
1.2117 475 0.0394 - - - - - - - - -
1.2143 476 0.0453 - - - - - - - - -
1.2168 477 0.1034 - - - - - - - - -
1.2194 478 0.0432 - - - - - - - - -
1.2219 479 0.1112 - - - - - - - - -
1.2245 480 0.1027 - - - - - - - - -
1.2270 481 0.0717 - - - - - - - - -
1.2296 482 0.0858 - - - - - - - - -
1.2321 483 0.081 - - - - - - - - -
1.2347 484 0.0342 - - - - - - - - -
1.2372 485 0.0239 - - - - - - - - -
1.2398 486 0.0657 - - - - - - - - -
1.2423 487 0.0461 - - - - - - - - -
1.2449 488 0.0738 - - - - - - - - -
1.2474 489 0.094 - - - - - - - - -
1.25 490 0.0414 - - - - - - - - -
1.2526 491 0.0376 - - - - - - - - -
1.2551 492 0.0504 - - - - - - - - -
1.2577 493 0.0856 - - - - - - - - -
1.2602 494 0.134 - - - - - - - - -
1.2628 495 0.0591 - - - - - - - - -
1.2653 496 0.0569 - - - - - - - - -
1.2679 497 0.099 - - - - - - - - -
1.2704 498 0.0343 - - - - - - - - -
1.2730 499 0.0324 - - - - - - - - -
1.2755 500 0.0709 - - - - - - - - -
1.2781 501 0.0449 - - - - - - - - -
1.2806 502 0.0565 - - - - - - - - -
1.2832 503 0.1233 - - - - - - - - -
1.2857 504 0.3064 - - - - - - - - -
1.2883 505 0.0274 - - - - - - - - -
1.2908 506 0.1614 - - - - - - - - -
1.2934 507 0.022 - - - - - - - - -
1.2959 508 0.0268 - - - - - - - - -
1.2985 509 0.0392 - - - - - - - - -
1.3010 510 0.0767 - - - - - - - - -
1.3036 511 0.0479 - - - - - - - - -
1.3061 512 0.0307 - - - - - - - - -
1.3087 513 0.0754 - - - - - - - - -
1.3112 514 0.0554 - - - - - - - - -
1.3138 515 0.0701 - - - - - - - - -
1.3163 516 0.0794 - - - - - - - - -
1.3189 517 0.0608 - - - - - - - - -
1.3214 518 0.029 - - - - - - - - -
1.3240 519 0.0302 - - - - - - - - -
1.3265 520 0.0446 - - - - - - - - -
1.3291 521 0.14 - - - - - - - - -
1.3316 522 0.0238 - - - - - - - - -
1.3342 523 0.0588 - - - - - - - - -
1.3367 524 0.147 - - - - - - - - -
1.3393 525 0.0354 - - - - - - - - -
1.3418 526 0.0304 - - - - - - - - -
1.3444 527 0.0651 - - - - - - - - -
1.3469 528 0.1694 - - - - - - - - -
1.3495 529 0.0912 - - - - - - - - -
1.3520 530 0.0501 - - - - - - - - -
1.3546 531 0.0729 0.7908 0.1250 2.3197 0.1010 0.0205 0.2796 0.9157 0.6714 0.7358
1.3571 532 0.0273 - - - - - - - - -
1.3597 533 0.0709 - - - - - - - - -
1.3622 534 0.0852 - - - - - - - - -
1.3648 535 0.0669 - - - - - - - - -
1.3673 536 0.0446 - - - - - - - - -
1.3699 537 0.0206 - - - - - - - - -
1.3724 538 0.0348 - - - - - - - - -
1.375 539 0.0138 - - - - - - - - -
1.3776 540 0.0769 - - - - - - - - -
1.3801 541 0.0778 - - - - - - - - -
1.3827 542 0.0293 - - - - - - - - -
1.3852 543 0.0295 - - - - - - - - -
1.3878 544 0.0235 - - - - - - - - -
1.3903 545 0.0542 - - - - - - - - -
1.3929 546 0.0552 - - - - - - - - -
1.3954 547 0.0502 - - - - - - - - -
1.3980 548 0.0514 - - - - - - - - -
1.4005 549 0.0981 - - - - - - - - -
1.4031 550 0.0514 - - - - - - - - -
1.4056 551 0.0382 - - - - - - - - -
1.4082 552 0.1352 - - - - - - - - -
1.4107 553 0.0379 - - - - - - - - -
1.4133 554 0.0542 - - - - - - - - -
1.4158 555 0.026 - - - - - - - - -
1.4184 556 0.1222 - - - - - - - - -
1.4209 557 0.059 - - - - - - - - -
1.4235 558 0.0621 - - - - - - - - -
1.4260 559 0.1069 - - - - - - - - -
1.4286 560 0.0804 - - - - - - - - -
1.4311 561 0.0754 - - - - - - - - -
1.4337 562 0.0225 - - - - - - - - -
1.4362 563 0.0243 - - - - - - - - -
1.4388 564 0.0749 - - - - - - - - -
1.4413 565 0.0161 - - - - - - - - -
1.4439 566 0.0461 - - - - - - - - -
1.4464 567 0.0736 - - - - - - - - -
1.4490 568 0.076 - - - - - - - - -
1.4515 569 0.0904 - - - - - - - - -
1.4541 570 0.0704 - - - - - - - - -
1.4566 571 0.0469 - - - - - - - - -
1.4592 572 0.0355 - - - - - - - - -
1.4617 573 0.0398 - - - - - - - - -
1.4643 574 0.136 - - - - - - - - -
1.4668 575 0.0562 - - - - - - - - -
1.4694 576 0.0971 - - - - - - - - -
1.4719 577 0.0626 - - - - - - - - -
1.4745 578 0.0654 - - - - - - - - -
1.4770 579 0.3237 - - - - - - - - -
1.4796 580 0.0122 - - - - - - - - -
1.4821 581 0.0237 - - - - - - - - -
1.4847 582 0.0606 - - - - - - - - -
1.4872 583 0.1069 - - - - - - - - -
1.4898 584 0.139 - - - - - - - - -
1.4923 585 0.0433 - - - - - - - - -
1.4949 586 0.0633 - - - - - - - - -
1.4974 587 0.499 - - - - - - - - -
1.5 588 0.0479 - - - - - - - - -
1.5026 589 0.0586 - - - - - - - - -
1.5051 590 0.047 0.8208 0.1414 2.3800 0.0879 0.0204 0.3144 0.9184 0.6576 0.7268
1.5077 591 0.071 - - - - - - - - -
1.5102 592 0.0954 - - - - - - - - -
1.5128 593 0.0224 - - - - - - - - -
1.5153 594 0.0772 - - - - - - - - -
1.5179 595 0.0385 - - - - - - - - -
1.5204 596 0.054 - - - - - - - - -
1.5230 597 0.0575 - - - - - - - - -
1.5255 598 0.0843 - - - - - - - - -
1.5281 599 0.0619 - - - - - - - - -
1.5306 600 0.1038 - - - - - - - - -
1.5332 601 0.0363 - - - - - - - - -
1.5357 602 0.0509 - - - - - - - - -
1.5383 603 0.1219 - - - - - - - - -
1.5408 604 0.0381 - - - - - - - - -
1.5434 605 0.0303 - - - - - - - - -
1.5459 606 0.04 - - - - - - - - -
1.5485 607 0.0718 - - - - - - - - -
1.5510 608 0.048 - - - - - - - - -
1.5536 609 0.0963 - - - - - - - - -
1.5561 610 0.0606 - - - - - - - - -
1.5587 611 0.0801 - - - - - - - - -
1.5612 612 0.1044 - - - - - - - - -
1.5638 613 0.0713 - - - - - - - - -
1.5663 614 0.0746 - - - - - - - - -
1.5689 615 0.1045 - - - - - - - - -
1.5714 616 0.0897 - - - - - - - - -
1.5740 617 0.0447 - - - - - - - - -
1.5765 618 0.0715 - - - - - - - - -
1.5791 619 0.0285 - - - - - - - - -
1.5816 620 0.0387 - - - - - - - - -
1.5842 621 0.1302 - - - - - - - - -
1.5867 622 0.0461 - - - - - - - - -
1.5893 623 0.0674 - - - - - - - - -
1.5918 624 0.0401 - - - - - - - - -
1.5944 625 0.0609 - - - - - - - - -
1.5969 626 0.0883 - - - - - - - - -
1.5995 627 0.1179 - - - - - - - - -
1.6020 628 0.068 - - - - - - - - -
1.6046 629 0.0375 - - - - - - - - -
1.6071 630 0.0626 - - - - - - - - -
1.6097 631 0.0419 - - - - - - - - -
1.6122 632 0.0574 - - - - - - - - -
1.6148 633 0.0463 - - - - - - - - -
1.6173 634 0.0538 - - - - - - - - -
1.6199 635 0.1048 - - - - - - - - -
1.6224 636 0.0416 - - - - - - - - -
1.625 637 0.0183 - - - - - - - - -
1.6276 638 0.0314 - - - - - - - - -
1.6301 639 0.0215 - - - - - - - - -
1.6327 640 0.0097 - - - - - - - - -
1.6352 641 0.0294 - - - - - - - - -
1.6378 642 0.0497 - - - - - - - - -
1.6403 643 0.0709 - - - - - - - - -
1.6429 644 0.0311 - - - - - - - - -
1.6454 645 0.0536 - - - - - - - - -
1.6480 646 0.0485 - - - - - - - - -
1.6505 647 0.0653 - - - - - - - - -
1.6531 648 0.0309 - - - - - - - - -
1.6556 649 0.0409 0.8265 0.1232 2.4417 0.0819 0.0206 0.3362 0.9194 0.6599 0.7431
1.6582 650 0.0788 - - - - - - - - -
1.6607 651 0.0917 - - - - - - - - -
1.6633 652 0.035 - - - - - - - - -
1.6658 653 0.0411 - - - - - - - - -
1.6684 654 0.059 - - - - - - - - -
1.6709 655 0.035 - - - - - - - - -
1.6735 656 0.0791 - - - - - - - - -
1.6760 657 0.0235 - - - - - - - - -
1.6786 658 0.0869 - - - - - - - - -
1.6811 659 0.0886 - - - - - - - - -
1.6837 660 0.0461 - - - - - - - - -
1.6862 661 0.0761 - - - - - - - - -
1.6888 662 0.0488 - - - - - - - - -
1.6913 663 0.0531 - - - - - - - - -
1.6939 664 0.0801 - - - - - - - - -
1.6964 665 0.0326 - - - - - - - - -
1.6990 666 0.0147 - - - - - - - - -
1.7015 667 0.0252 - - - - - - - - -
1.7041 668 0.0776 - - - - - - - - -
1.7066 669 0.0213 - - - - - - - - -
1.7092 670 0.0213 - - - - - - - - -
1.7117 671 0.093 - - - - - - - - -
1.7143 672 0.0989 - - - - - - - - -
1.7168 673 0.0264 - - - - - - - - -
1.7194 674 0.059 - - - - - - - - -
1.7219 675 0.1042 - - - - - - - - -
1.7245 676 0.0509 - - - - - - - - -
1.7270 677 0.0224 - - - - - - - - -
1.7296 678 0.067 - - - - - - - - -
1.7321 679 0.3453 - - - - - - - - -
1.7347 680 0.1518 - - - - - - - - -
1.7372 681 0.0635 - - - - - - - - -
1.7398 682 0.0669 - - - - - - - - -
1.7423 683 0.0635 - - - - - - - - -
1.7449 684 0.1072 - - - - - - - - -
1.7474 685 0.008 - - - - - - - - -
1.75 686 0.0338 - - - - - - - - -
1.7526 687 0.0986 - - - - - - - - -
1.7551 688 0.0534 - - - - - - - - -
1.7577 689 0.0464 - - - - - - - - -
1.7602 690 0.0364 - - - - - - - - -
1.7628 691 0.0276 - - - - - - - - -
1.7653 692 0.0598 - - - - - - - - -
1.7679 693 0.0372 - - - - - - - - -
1.7704 694 0.0759 - - - - - - - - -
1.7730 695 0.0294 - - - - - - - - -
1.7755 696 0.0537 - - - - - - - - -
1.7781 697 0.0608 - - - - - - - - -
1.7806 698 0.1348 - - - - - - - - -
1.7832 699 0.0588 - - - - - - - - -
1.7857 700 0.0524 - - - - - - - - -
1.7883 701 0.0247 - - - - - - - - -
1.7908 702 0.0673 - - - - - - - - -
1.7934 703 0.0206 - - - - - - - - -
1.7959 704 0.109 - - - - - - - - -
1.7985 705 0.0592 - - - - - - - - -
1.8010 706 0.071 - - - - - - - - -
1.8036 707 0.0589 - - - - - - - - -
1.8061 708 0.0772 0.8253 0.1323 2.5016 0.1077 0.0208 0.3019 0.9176 0.6682 0.7276
1.8087 709 0.0416 - - - - - - - - -
1.8112 710 0.0622 - - - - - - - - -
1.8138 711 0.0237 - - - - - - - - -
1.8163 712 0.0598 - - - - - - - - -
1.8189 713 0.0259 - - - - - - - - -
1.8214 714 0.075 - - - - - - - - -
1.8240 715 0.0778 - - - - - - - - -
1.8265 716 0.0424 - - - - - - - - -
1.8291 717 0.0711 - - - - - - - - -
1.8316 718 0.0508 - - - - - - - - -
1.8342 719 0.0765 - - - - - - - - -
1.8367 720 0.0457 - - - - - - - - -
1.8393 721 0.1753 - - - - - - - - -
1.8418 722 0.0397 - - - - - - - - -
1.8444 723 0.0708 - - - - - - - - -
1.8469 724 0.035 - - - - - - - - -
1.8495 725 0.5028 - - - - - - - - -
1.8520 726 0.0604 - - - - - - - - -
1.8546 727 0.0838 - - - - - - - - -
1.8571 728 0.1376 - - - - - - - - -
1.8597 729 0.0947 - - - - - - - - -
1.8622 730 0.3682 - - - - - - - - -
1.8648 731 0.0916 - - - - - - - - -
1.8673 732 0.0413 - - - - - - - - -
1.8699 733 0.037 - - - - - - - - -
1.8724 734 0.0439 - - - - - - - - -
1.875 735 0.0511 - - - - - - - - -
1.8776 736 0.0639 - - - - - - - - -
1.8801 737 0.0189 - - - - - - - - -
1.8827 738 0.0726 - - - - - - - - -
1.8852 739 0.0966 - - - - - - - - -
1.8878 740 0.0848 - - - - - - - - -
1.8903 741 0.038 - - - - - - - - -
1.8929 742 0.0846 - - - - - - - - -
1.8954 743 0.0832 - - - - - - - - -
1.8980 744 0.033 - - - - - - - - -
1.9005 745 0.0761 - - - - - - - - -
1.9031 746 0.012 - - - - - - - - -
1.9056 747 0.0153 - - - - - - - - -
1.9082 748 0.0663 - - - - - - - - -
1.9107 749 0.0436 - - - - - - - - -
1.9133 750 0.0511 - - - - - - - - -
1.9158 751 0.0698 - - - - - - - - -
1.9184 752 0.0322 - - - - - - - - -
1.9209 753 0.0245 - - - - - - - - -
1.9235 754 0.0245 - - - - - - - - -
1.9260 755 0.027 - - - - - - - - -
1.9286 756 0.0507 - - - - - - - - -
1.9311 757 0.0587 - - - - - - - - -
1.9337 758 0.0697 - - - - - - - - -
1.9362 759 0.0789 - - - - - - - - -
1.9388 760 0.0577 - - - - - - - - -
1.9413 761 0.0919 - - - - - - - - -
1.9439 762 0.0737 - - - - - - - - -
1.9464 763 0.069 - - - - - - - - -
1.9490 764 0.1402 - - - - - - - - -
1.9515 765 0.0599 - - - - - - - - -
1.9541 766 0.042 - - - - - - - - -
1.9566 767 0.1276 0.8538 0.1168 2.5234 0.0960 0.0204 0.3155 0.9181 0.6669 0.7244
1.9592 768 0.0995 - - - - - - - - -
1.9617 769 0.0381 - - - - - - - - -
1.9643 770 0.1053 - - - - - - - - -
1.9668 771 0.0385 - - - - - - - - -
1.9694 772 0.0452 - - - - - - - - -
1.9719 773 0.0702 - - - - - - - - -
1.9745 774 0.0506 - - - - - - - - -
1.9770 775 0.0351 - - - - - - - - -
1.9796 776 0.2187 - - - - - - - - -
1.9821 777 0.0222 - - - - - - - - -
1.9847 778 0.0532 - - - - - - - - -
1.9872 779 0.067 - - - - - - - - -
1.9898 780 0.0833 - - - - - - - - -
1.9923 781 0.0442 - - - - - - - - -
1.9949 782 0.0744 - - - - - - - - -
1.9974 783 0.047 - - - - - - - - -
2.0 784 0.0001 - - - - - - - - -
2.0026 785 0.0084 - - - - - - - - -
2.0051 786 0.0048 - - - - - - - - -
2.0077 787 0.0306 - - - - - - - - -
2.0102 788 0.0197 - - - - - - - - -
2.0128 789 0.0228 - - - - - - - - -
2.0153 790 0.0464 - - - - - - - - -
2.0179 791 0.0705 - - - - - - - - -
2.0204 792 0.031 - - - - - - - - -
2.0230 793 0.0212 - - - - - - - - -
2.0255 794 0.0541 - - - - - - - - -
2.0281 795 0.0144 - - - - - - - - -
2.0306 796 0.0101 - - - - - - - - -
2.0332 797 0.0737 - - - - - - - - -
2.0357 798 0.0116 - - - - - - - - -
2.0383 799 0.1078 - - - - - - - - -
2.0408 800 0.0574 - - - - - - - - -
2.0434 801 0.0106 - - - - - - - - -
2.0459 802 0.0404 - - - - - - - - -
2.0485 803 0.065 - - - - - - - - -
2.0510 804 0.0386 - - - - - - - - -
2.0536 805 0.037 - - - - - - - - -
2.0561 806 0.0232 - - - - - - - - -
2.0587 807 0.0672 - - - - - - - - -
2.0612 808 0.0354 - - - - - - - - -
2.0638 809 0.0287 - - - - - - - - -
2.0663 810 0.0466 - - - - - - - - -
2.0689 811 0.0339 - - - - - - - - -
2.0714 812 0.0712 - - - - - - - - -
2.0740 813 0.0843 - - - - - - - - -
2.0765 814 0.0485 - - - - - - - - -
2.0791 815 0.0363 - - - - - - - - -
2.0816 816 0.1128 - - - - - - - - -
2.0842 817 0.0395 - - - - - - - - -
2.0867 818 0.0218 - - - - - - - - -
2.0893 819 0.049 - - - - - - - - -
2.0918 820 0.0445 - - - - - - - - -
2.0944 821 0.0886 - - - - - - - - -
2.0969 822 0.0477 - - - - - - - - -
2.0995 823 0.0179 - - - - - - - - -
2.1020 824 0.0253 - - - - - - - - -
2.1046 825 0.0156 - - - - - - - - -
2.1071 826 0.0235 0.8646 0.1309 2.4609 0.0963 0.0201 0.2871 0.9167 0.6652 0.7325
2.1097 827 0.013 - - - - - - - - -
2.1122 828 0.0197 - - - - - - - - -
2.1148 829 0.0346 - - - - - - - - -
2.1173 830 0.0353 - - - - - - - - -
2.1199 831 0.0133 - - - - - - - - -
2.1224 832 0.0382 - - - - - - - - -
2.125 833 0.0511 - - - - - - - - -
2.1276 834 0.0082 - - - - - - - - -
2.1301 835 0.0424 - - - - - - - - -
2.1327 836 0.016 - - - - - - - - -
2.1352 837 0.0227 - - - - - - - - -
2.1378 838 0.0172 - - - - - - - - -
2.1403 839 0.0156 - - - - - - - - -
2.1429 840 0.028 - - - - - - - - -
2.1454 841 0.0169 - - - - - - - - -
2.1480 842 0.0636 - - - - - - - - -
2.1505 843 0.0321 - - - - - - - - -
2.1531 844 0.0814 - - - - - - - - -
2.1556 845 0.0382 - - - - - - - - -
2.1582 846 0.0382 - - - - - - - - -
2.1607 847 0.0478 - - - - - - - - -
2.1633 848 0.0352 - - - - - - - - -
2.1658 849 0.1091 - - - - - - - - -
2.1684 850 0.0119 - - - - - - - - -
2.1709 851 0.0543 - - - - - - - - -
2.1735 852 0.0319 - - - - - - - - -
2.1760 853 0.0373 - - - - - - - - -
2.1786 854 0.12 - - - - - - - - -
2.1811 855 0.0099 - - - - - - - - -
2.1837 856 0.0213 - - - - - - - - -
2.1862 857 0.019 - - - - - - - - -
2.1888 858 0.0661 - - - - - - - - -
2.1913 859 0.0562 - - - - - - - - -
2.1939 860 0.0285 - - - - - - - - -
2.1964 861 0.0625 - - - - - - - - -
2.1990 862 0.0065 - - - - - - - - -
2.2015 863 0.0357 - - - - - - - - -
2.2041 864 0.026 - - - - - - - - -
2.2066 865 0.0144 - - - - - - - - -
2.2092 866 0.0227 - - - - - - - - -
2.2117 867 0.0415 - - - - - - - - -
2.2143 868 0.0484 - - - - - - - - -
2.2168 869 0.0406 - - - - - - - - -
2.2194 870 0.0183 - - - - - - - - -
2.2219 871 0.0585 - - - - - - - - -
2.2245 872 0.0446 - - - - - - - - -
2.2270 873 0.0763 - - - - - - - - -
2.2296 874 0.0115 - - - - - - - - -
2.2321 875 0.0384 - - - - - - - - -
2.2347 876 0.0093 - - - - - - - - -
2.2372 877 0.4063 - - - - - - - - -
2.2398 878 0.0469 - - - - - - - - -
2.2423 879 0.0522 - - - - - - - - -
2.2449 880 0.037 - - - - - - - - -
2.2474 881 0.0345 - - - - - - - - -
2.25 882 0.0433 - - - - - - - - -
2.2526 883 0.0564 - - - - - - - - -
2.2551 884 0.0088 - - - - - - - - -
2.2577 885 0.0453 0.8797 0.1270 2.3914 0.1080 0.0198 0.2885 0.9160 0.6712 0.7337
2.2602 886 0.0458 - - - - - - - - -
2.2628 887 0.035 - - - - - - - - -
2.2653 888 0.0296 - - - - - - - - -
2.2679 889 0.0188 - - - - - - - - -
2.2704 890 0.0759 - - - - - - - - -
2.2730 891 0.0136 - - - - - - - - -
2.2755 892 0.0596 - - - - - - - - -
2.2781 893 0.2908 - - - - - - - - -
2.2806 894 0.0413 - - - - - - - - -
2.2832 895 0.017 - - - - - - - - -
2.2857 896 0.0161 - - - - - - - - -
2.2883 897 0.0636 - - - - - - - - -
2.2908 898 0.0259 - - - - - - - - -
2.2934 899 0.0124 - - - - - - - - -
2.2959 900 0.0227 - - - - - - - - -
2.2985 901 0.0917 - - - - - - - - -
2.3010 902 0.0512 - - - - - - - - -
2.3036 903 0.0086 - - - - - - - - -
2.3061 904 0.0068 - - - - - - - - -
2.3087 905 0.0134 - - - - - - - - -
2.3112 906 0.0374 - - - - - - - - -
2.3138 907 0.0358 - - - - - - - - -
2.3163 908 0.3427 - - - - - - - - -
2.3189 909 0.0152 - - - - - - - - -
2.3214 910 0.0187 - - - - - - - - -
2.3240 911 0.0062 - - - - - - - - -
2.3265 912 0.0839 - - - - - - - - -
2.3291 913 0.0673 - - - - - - - - -
2.3316 914 0.0312 - - - - - - - - -
2.3342 915 0.071 - - - - - - - - -
2.3367 916 0.0294 - - - - - - - - -
2.3393 917 0.0514 - - - - - - - - -
2.3418 918 0.0391 - - - - - - - - -
2.3444 919 0.014 - - - - - - - - -
2.3469 920 0.0613 - - - - - - - - -
2.3495 921 0.0106 - - - - - - - - -
2.3520 922 0.0584 - - - - - - - - -
2.3546 923 0.084 - - - - - - - - -
2.3571 924 0.0116 - - - - - - - - -
2.3597 925 0.0423 - - - - - - - - -
2.3622 926 0.015 - - - - - - - - -
2.3648 927 0.0186 - - - - - - - - -
2.3673 928 0.0677 - - - - - - - - -
2.3699 929 0.0653 - - - - - - - - -
2.3724 930 0.04 - - - - - - - - -
2.375 931 0.0428 - - - - - - - - -
2.3776 932 0.0299 - - - - - - - - -
2.3801 933 0.0339 - - - - - - - - -
2.3827 934 0.0625 - - - - - - - - -
2.3852 935 0.0688 - - - - - - - - -
2.3878 936 0.0179 - - - - - - - - -
2.3903 937 0.0091 - - - - - - - - -
2.3929 938 0.0994 - - - - - - - - -
2.3954 939 0.0397 - - - - - - - - -
2.3980 940 0.0497 - - - - - - - - -
2.4005 941 0.0108 - - - - - - - - -
2.4031 942 0.1045 - - - - - - - - -
2.4056 943 0.0825 - - - - - - - - -
2.4082 944 0.0253 0.8490 0.1185 2.3982 0.1004 0.0195 0.2837 0.9150 0.6639 0.7334
2.4107 945 0.0166 - - - - - - - - -
2.4133 946 0.0383 - - - - - - - - -
2.4158 947 0.034 - - - - - - - - -
2.4184 948 0.0541 - - - - - - - - -
2.4209 949 0.0368 - - - - - - - - -
2.4235 950 0.0265 - - - - - - - - -
2.4260 951 0.1426 - - - - - - - - -
2.4286 952 0.0408 - - - - - - - - -
2.4311 953 0.0955 - - - - - - - - -
2.4337 954 0.1052 - - - - - - - - -
2.4362 955 0.0293 - - - - - - - - -
2.4388 956 0.2234 - - - - - - - - -
2.4413 957 0.0417 - - - - - - - - -
2.4439 958 0.0385 - - - - - - - - -
2.4464 959 0.0373 - - - - - - - - -
2.4490 960 0.0186 - - - - - - - - -
2.4515 961 0.0448 - - - - - - - - -
2.4541 962 0.0414 - - - - - - - - -
2.4566 963 0.0337 - - - - - - - - -
2.4592 964 0.0282 - - - - - - - - -
2.4617 965 0.0464 - - - - - - - - -
2.4643 966 0.0204 - - - - - - - - -
2.4668 967 0.0209 - - - - - - - - -
2.4694 968 0.042 - - - - - - - - -
2.4719 969 0.0653 - - - - - - - - -
2.4745 970 0.0481 - - - - - - - - -
2.4770 971 0.0421 - - - - - - - - -
2.4796 972 0.0737 - - - - - - - - -
2.4821 973 0.032 - - - - - - - - -
2.4847 974 0.0607 - - - - - - - - -
2.4872 975 0.0784 - - - - - - - - -
2.4898 976 0.028 - - - - - - - - -
2.4923 977 0.0922 - - - - - - - - -
2.4949 978 0.0376 - - - - - - - - -
2.4974 979 0.0346 - - - - - - - - -
2.5 980 0.0977 - - - - - - - - -
2.5026 981 0.0471 - - - - - - - - -
2.5051 982 0.0616 - - - - - - - - -
2.5077 983 0.0368 - - - - - - - - -
2.5102 984 0.0169 - - - - - - - - -
2.5128 985 0.0298 - - - - - - - - -
2.5153 986 0.0187 - - - - - - - - -
2.5179 987 0.0529 - - - - - - - - -
2.5204 988 0.0346 - - - - - - - - -
2.5230 989 0.0879 - - - - - - - - -
2.5255 990 0.0234 - - - - - - - - -
2.5281 991 0.0493 - - - - - - - - -
2.5306 992 0.0901 - - - - - - - - -
2.5332 993 0.0377 - - - - - - - - -
2.5357 994 0.031 - - - - - - - - -
2.5383 995 0.0572 - - - - - - - - -
2.5408 996 0.0454 - - - - - - - - -
2.5434 997 0.0433 - - - - - - - - -
2.5459 998 0.0589 - - - - - - - - -
2.5485 999 0.0217 - - - - - - - - -
2.5510 1000 0.0483 - - - - - - - - -
2.5536 1001 0.0604 - - - - - - - - -
2.5561 1002 0.021 - - - - - - - - -
2.5587 1003 0.0577 0.7841 0.1216 2.3861 0.1020 0.0196 0.2750 0.9167 0.6718 0.7341
2.5612 1004 0.0405 - - - - - - - - -
2.5638 1005 0.0543 - - - - - - - - -
2.5663 1006 0.0141 - - - - - - - - -
2.5689 1007 0.0132 - - - - - - - - -
2.5714 1008 0.0195 - - - - - - - - -
2.5740 1009 0.0438 - - - - - - - - -
2.5765 1010 0.1235 - - - - - - - - -
2.5791 1011 0.0168 - - - - - - - - -
2.5816 1012 0.0447 - - - - - - - - -
2.5842 1013 0.0596 - - - - - - - - -
2.5867 1014 0.0371 - - - - - - - - -
2.5893 1015 0.0174 - - - - - - - - -
2.5918 1016 0.057 - - - - - - - - -
2.5944 1017 0.0163 - - - - - - - - -
2.5969 1018 0.0316 - - - - - - - - -
2.5995 1019 0.0175 - - - - - - - - -
2.6020 1020 0.0565 - - - - - - - - -
2.6046 1021 0.0161 - - - - - - - - -
2.6071 1022 0.0153 - - - - - - - - -
2.6097 1023 0.0294 - - - - - - - - -
2.6122 1024 0.031 - - - - - - - - -
2.6148 1025 0.0408 - - - - - - - - -
2.6173 1026 0.0184 - - - - - - - - -
2.6199 1027 0.0226 - - - - - - - - -
2.6224 1028 0.0192 - - - - - - - - -
2.625 1029 0.0667 - - - - - - - - -
2.6276 1030 0.0467 - - - - - - - - -
2.6301 1031 0.0331 - - - - - - - - -
2.6327 1032 0.0459 - - - - - - - - -
2.6352 1033 0.0123 - - - - - - - - -
2.6378 1034 0.0541 - - - - - - - - -
2.6403 1035 0.1093 - - - - - - - - -
2.6429 1036 0.0494 - - - - - - - - -
2.6454 1037 0.0495 - - - - - - - - -
2.6480 1038 0.025 - - - - - - - - -
2.6505 1039 0.0098 - - - - - - - - -
2.6531 1040 0.0376 - - - - - - - - -
2.6556 1041 0.053 - - - - - - - - -
2.6582 1042 0.0332 - - - - - - - - -
2.6607 1043 0.0272 - - - - - - - - -
2.6633 1044 0.0708 - - - - - - - - -
2.6658 1045 0.01 - - - - - - - - -
2.6684 1046 0.0141 - - - - - - - - -
2.6709 1047 0.046 - - - - - - - - -
2.6735 1048 0.0093 - - - - - - - - -
2.6760 1049 0.0335 - - - - - - - - -
2.6786 1050 0.0021 - - - - - - - - -
2.6811 1051 0.0201 - - - - - - - - -
2.6837 1052 0.0459 - - - - - - - - -
2.6862 1053 0.0247 - - - - - - - - -
2.6888 1054 0.0535 - - - - - - - - -
2.6913 1055 0.0482 - - - - - - - - -
2.6939 1056 0.0147 - - - - - - - - -
2.6964 1057 0.1053 - - - - - - - - -
2.6990 1058 0.0165 - - - - - - - - -
2.7015 1059 0.0115 - - - - - - - - -
2.7041 1060 0.0541 - - - - - - - - -
2.7066 1061 0.0487 - - - - - - - - -
2.7092 1062 0.0567 0.7855 0.1111 2.3604 0.1043 0.0194 0.2682 0.9186 0.6740 0.7294
2.7117 1063 0.0173 - - - - - - - - -
2.7143 1064 0.386 - - - - - - - - -
2.7168 1065 0.0455 - - - - - - - - -
2.7194 1066 0.0453 - - - - - - - - -
2.7219 1067 0.0704 - - - - - - - - -
2.7245 1068 0.0129 - - - - - - - - -
2.7270 1069 0.0238 - - - - - - - - -
2.7296 1070 0.0703 - - - - - - - - -
2.7321 1071 0.0956 - - - - - - - - -
2.7347 1072 0.0322 - - - - - - - - -
2.7372 1073 0.0213 - - - - - - - - -
2.7398 1074 0.0077 - - - - - - - - -
2.7423 1075 0.0184 - - - - - - - - -
2.7449 1076 0.0324 - - - - - - - - -
2.7474 1077 0.022 - - - - - - - - -
2.75 1078 0.0265 - - - - - - - - -
2.7526 1079 0.0667 - - - - - - - - -
2.7551 1080 0.0125 - - - - - - - - -
2.7577 1081 0.0455 - - - - - - - - -
2.7602 1082 0.0046 - - - - - - - - -
2.7628 1083 0.0617 - - - - - - - - -
2.7653 1084 0.0301 - - - - - - - - -
2.7679 1085 0.0391 - - - - - - - - -
2.7704 1086 0.0852 - - - - - - - - -
2.7730 1087 0.0808 - - - - - - - - -
2.7755 1088 0.0322 - - - - - - - - -
2.7781 1089 0.0151 - - - - - - - - -
2.7806 1090 0.0493 - - - - - - - - -
2.7832 1091 0.0409 - - - - - - - - -
2.7857 1092 0.0839 - - - - - - - - -
2.7883 1093 0.0813 - - - - - - - - -
2.7908 1094 0.0592 - - - - - - - - -
2.7934 1095 0.0299 - - - - - - - - -
2.7959 1096 0.0131 - - - - - - - - -
2.7985 1097 0.0302 - - - - - - - - -
2.8010 1098 0.0203 - - - - - - - - -
2.8036 1099 0.0117 - - - - - - - - -
2.8061 1100 0.0427 - - - - - - - - -
2.8087 1101 0.0816 - - - - - - - - -
2.8112 1102 0.05 - - - - - - - - -
2.8138 1103 0.069 - - - - - - - - -
2.8163 1104 0.0815 - - - - - - - - -
2.8189 1105 0.0403 - - - - - - - - -
2.8214 1106 0.0384 - - - - - - - - -
2.8240 1107 0.0339 - - - - - - - - -
2.8265 1108 0.0588 - - - - - - - - -
2.8291 1109 0.0066 - - - - - - - - -
2.8316 1110 0.0282 - - - - - - - - -
2.8342 1111 0.0259 - - - - - - - - -
2.8367 1112 0.1058 - - - - - - - - -
2.8393 1113 0.0195 - - - - - - - - -
2.8418 1114 0.0261 - - - - - - - - -
2.8444 1115 0.0771 - - - - - - - - -
2.8469 1116 0.0581 - - - - - - - - -
2.8495 1117 0.0372 - - - - - - - - -
2.8520 1118 0.0361 - - - - - - - - -
2.8546 1119 0.0232 - - - - - - - - -
2.8571 1120 0.0169 - - - - - - - - -
2.8597 1121 0.0344 0.7702 0.1186 2.3960 0.0989 0.0195 0.2707 0.9181 0.6759 0.7356
2.8622 1122 0.0285 - - - - - - - - -
2.8648 1123 0.07 - - - - - - - - -
2.8673 1124 0.0527 - - - - - - - - -
2.8699 1125 0.0342 - - - - - - - - -
2.8724 1126 0.0263 - - - - - - - - -
2.875 1127 0.2125 - - - - - - - - -
2.8776 1128 0.0312 - - - - - - - - -
2.8801 1129 0.0213 - - - - - - - - -
2.8827 1130 0.0524 - - - - - - - - -
2.8852 1131 0.0095 - - - - - - - - -
2.8878 1132 0.0402 - - - - - - - - -
2.8903 1133 0.0556 - - - - - - - - -
2.8929 1134 0.0355 - - - - - - - - -
2.8954 1135 0.0458 - - - - - - - - -
2.8980 1136 0.0469 - - - - - - - - -
2.9005 1137 0.0389 - - - - - - - - -
2.9031 1138 0.0627 - - - - - - - - -
2.9056 1139 0.0535 - - - - - - - - -
2.9082 1140 0.0671 - - - - - - - - -
2.9107 1141 0.0137 - - - - - - - - -
2.9133 1142 0.0502 - - - - - - - - -
2.9158 1143 0.0259 - - - - - - - - -
2.9184 1144 0.0085 - - - - - - - - -
2.9209 1145 0.0387 - - - - - - - - -
2.9235 1146 0.0438 - - - - - - - - -
2.9260 1147 0.0072 - - - - - - - - -
2.9286 1148 0.0209 - - - - - - - - -
2.9311 1149 0.0483 - - - - - - - - -
2.9337 1150 0.0628 - - - - - - - - -
2.9362 1151 0.0612 - - - - - - - - -
2.9388 1152 0.0419 - - - - - - - - -
2.9413 1153 0.5139 - - - - - - - - -
2.9439 1154 0.0633 - - - - - - - - -
2.9464 1155 0.0127 - - - - - - - - -
2.9490 1156 0.0822 - - - - - - - - -
2.9515 1157 0.0175 - - - - - - - - -
2.9541 1158 0.0047 - - - - - - - - -
2.9566 1159 0.0447 - - - - - - - - -
2.9592 1160 0.0375 - - - - - - - - -
2.9617 1161 0.0581 - - - - - - - - -
2.9643 1162 0.0733 - - - - - - - - -
2.9668 1163 0.0211 - - - - - - - - -
2.9694 1164 0.1113 - - - - - - - - -
2.9719 1165 0.0554 - - - - - - - - -
2.9745 1166 0.0672 - - - - - - - - -
2.9770 1167 0.0374 - - - - - - - - -
2.9796 1168 0.0059 - - - - - - - - -
2.9821 1169 0.0237 - - - - - - - - -
2.9847 1170 0.064 - - - - - - - - -
2.9872 1171 0.0497 - - - - - - - - -
2.9898 1172 0.012 - - - - - - - - -
2.9923 1173 0.0413 - - - - - - - - -
2.9949 1174 0.0304 - - - - - - - - -
2.9974 1175 0.0196 - - - - - - - - -
3.0 1176 0.0002 0.7696 0.1121 2.3511 0.0822 0.0197 0.2703 0.9181 0.6771 0.7422
-1 -1 - - - - - - - 0.9181 0.6771 0.7422

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.51.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
20
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for bobox/XLMRoBERTaM3-CustomPoolin-v1.02-1024dMLP-s1

Base model

BAAI/bge-m3
Finetuned
(244)
this model

Datasets used to train bobox/XLMRoBERTaM3-CustomPoolin-v1.02-1024dMLP-s1

Evaluation results