Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

adapter: lora
base_model: Qwen/Qwen2.5-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 64f3e93ecf7464c7_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/
  type:
    field_input: dialogue
    field_instruction: system
    field_output: messages
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: dada22231/d0388d0e-feb6-456f-8e1c-30e4d39468cc
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/64f3e93ecf7464c7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 66a6eec6-5fdc-40ed-8e33-3cac05022b5a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 66a6eec6-5fdc-40ed-8e33-3cac05022b5a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

d0388d0e-feb6-456f-8e1c-30e4d39468cc

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0341

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 10

Training results

Training Loss Epoch Step Validation Loss
0.2021 0.0005 1 0.2007
0.1865 0.0016 3 0.1955
0.1703 0.0032 6 0.1236
0.0549 0.0047 9 0.0341

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for dada22231/d0388d0e-feb6-456f-8e1c-30e4d39468cc

Base model

Qwen/Qwen2.5-1.5B
Adapter
(329)
this model