soreva / soreva.py
OlameMend's picture
Add files using upload-large-folder tool
24d3d7b verified
# coding=utf-8
# Copyright 2025 The Leo-Ai and HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import OrderedDict
import datasets
logger = datasets.logging.get_logger(__name__)
""" Soreva Dataset"""
_SOREVA_LANG_TO_ID = OrderedDict([
("Afrikaans", "af"), ("Bafia", "ksf"), ("Bafut", "bfd"), ("Baka", "bdh"), ("Bakoko", "bkh"),
("Bamun", "bax"), ("Basaa", "bas"), ("Duala", "dua"), ("Ejagham", "etu"), ("Eton", "eto"),
("Ewondo", "ewo"), ("Fe", "fmp"), ("Fulfulde", "fub"), ("Gbaya", "gya"), ("Ghamála", "bbj"),
("Hausa", "ha"), ("Igbo", "ibo"), ("isiXhosa", "xho"), ("isiZulu", "zul"), ("Isu", "isu"),
("Kera", "ker"), ("Kiswahili", "swa"), ("Kom", "bkm"), ("Kwasio", "kqs"), ("Lamso", "lns"),
("Lingala", "lin"), ("Maka", "mcp"), ("Malagasy", "mg"), ("Medumba", "byv"), ("Mka", "bqz"),
("Mundang", "mua"), ("Nda", "nda"), ("Ngiemboon", "nnh"), ("Ngombala", "nla"), ("Nomaande", "lem"),
("Nugunu", "yas"), ("Pidgin", "pcm"), ("Pulaar", "fuc"), ("Sepedi", "nso"), ("Tuki", "bag"),
("Tunen", "tvu"), ("Twi", "twi"), ("Vute", "vut"), ("Wolof", "wol"), ("Yambeta", "yat"),
("Yangben", "yav"), ("Yemba", "ybb"), ("Yoruba", "yor"), ("Éwé", "ewe")
])
_SOREVA_LANG_SHORT_TO_LONG = {v: k for k, v in _SOREVA_LANG_TO_ID.items()}
_SOREVA_LANG = sorted([
"af_za", "bag_cm", "bas_cm", "bax_cm", "bbj_cm", "bqz_cm", "bdh_cm", "bfd_cm", "bkh_cm", "bkm_cm",
"ksf_cm", "byv_cm", "dua_cm", "ewe_tg", "etu_cm", "eto_cm", "ewo_cm", "fmp_cm", "fub_cm", "fuc_sn",
"gya_cf", "ha_ng", "ibo_ng", "isu_cm", "ker_td", "kqs_cm", "lem_cm", "lin_cd", "lns_cm", "mcp_cm",
"mg_mg", "tvu_cm", "mua_cm", "nda_cm", "nla_cm", "nnh_cm", "nso_za", "pcm_cm", "swa_ke", "twi_gh",
"vut_cm", "wol_sn", "xho_za", "yas_cm", "yav_cm", "ybb_cm", "yor_ng", "zul_za",'yat_cm'
])
_SOREVA_LONG_TO_LANG = {_SOREVA_LANG_SHORT_TO_LONG["_".join(k.split("_")[:-1]) or k]: k for k in _SOREVA_LANG}
_SOREVA_LANG_TO_LONG = {v: k for k, v in _SOREVA_LONG_TO_LANG.items()}
_ALL_LANG = _SOREVA_LANG
_ALL_CONFIGS = []
for langs in _SOREVA_LANG:
_ALL_CONFIGS.append(langs)
_ALL_CONFIGS.append("all")
# TODO(Soreva)
_DESCRIPTION = "SOREVA is a multilingual speech dataset designed for the evaluation" \
"of text-to-speech (TTS) and speech representation models in low-resource African languages. " \
"This dataset specifically targets out-of-domain generalization, addressing the lack of evaluation sets for" \
" languages typically trained on narrow-domain corpora such as religious texts."
_CITATION = ""
_HOMEPAGE_URL = ""
_BASE_PATH = "data/{langs}/"
_DATA_URL = _BASE_PATH + "audio/{split}.tar.gz"
_META_URL = _BASE_PATH + "{split}.tsv"
class sorevaConfig(datasets.BuilderConfig):
"""BuilderConfig for xtreme-s"""
def __init__(
self, name, description, citation, homepage
):
super(sorevaConfig, self).__init__(
name=self.name,
version=datasets.Version("1.0.0", ""),
description=self.description,
)
self.name = name
self.description = description
self.citation = citation
self.homepage = homepage
def _build_config(name):
return sorevaConfig(
name=name,
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE_URL,
)
class soreva(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [_build_config(name) for name in _ALL_CONFIGS]
def _info(self):
langs = _ALL_CONFIGS
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"transcription": datasets.Value("string"),
"raw_transcription": datasets.Value("string"),
"gender": datasets.ClassLabel(names=["male", "female", "other"]),
"lang_id": datasets.ClassLabel(names=langs),
"language": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=self.config.description + "\n" + _DESCRIPTION,
features=features,
supervised_keys=("audio", "transcription"),
homepage=self.config.homepage,
citation=self.config.citation + "\n" + _CITATION,
)
# soreva
def _split_generators(self, dl_manager):
all_splits = ["train", "dev", "test"]
available_splits = []
if self.config.name == "all":
langs = _SOREVA_LANG
else:
langs = [self.config.name]
data_urls = {}
meta_urls = {}
for split in all_splits:
try:
if self.config.name == "all":
data_urls[split] = [_DATA_URL.format(langs=lang, split=split) for lang in langs]
meta_urls[split] = [_META_URL.format(langs=lang, split=split) for lang in langs]
else:
data_urls[split] = [_DATA_URL.format(langs=self.config.name, split=split)]
meta_urls[split] = [_META_URL.format(langs=self.config.name, split=split)]
# Test of downloading existing split
dl_manager.download(meta_urls[split])
available_splits.append(split)
except Exception as e:
logger.warning(f"Split '{split}' not available : {e}")
archive_paths = dl_manager.download({s: data_urls[s] for s in available_splits})
local_extracted_archives = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
archive_iters = {s: [dl_manager.iter_archive(p) for p in archive_paths[s]] for s in available_splits}
meta_paths = dl_manager.download({s: meta_urls[s] for s in available_splits})
split_gens = []
for split in available_splits:
split_name = {
"train": datasets.Split.TRAIN,
"dev": datasets.Split.VALIDATION,
"test": datasets.Split.TEST
}[split]
split_gens.append(
datasets.SplitGenerator(
name=split_name,
gen_kwargs={
"local_extracted_archives": local_extracted_archives.get(split, [None] * len(meta_paths.get(split))),
"archive_iters": archive_iters.get(split),
"text_paths": meta_paths.get(split)
},
)
)
return split_gens
def _get_data(self, lines, lang_id):
data = {}
gender_to_id = {"MALE": 0, "FEMALE": 1, "OTHER": 2}
for line in lines:
if isinstance(line, bytes):
line = line.decode("utf-8")
(
file_name,
raw_transcription,
transcription,
gender,
) = line.strip().split("\t")
data[file_name] = {
"raw_transcription": raw_transcription,
"transcription": transcription,
"gender": gender_to_id[gender],
"lang_id": _SOREVA_LANG.index(lang_id),
"language": _SOREVA_LANG_TO_LONG[lang_id],
}
return data
def _generate_examples(self, local_extracted_archives, archive_iters, text_paths):
assert len(local_extracted_archives) == len(archive_iters) == len(text_paths)
key = 0
if self.config.name == "all":
langs = _SOREVA_LANG
else:
langs = [self.config.name]
for archive, text_path, local_extracted_path, lang_id in zip(archive_iters, text_paths, local_extracted_archives, langs):
with open(text_path, encoding="utf-8") as f:
lines = f.readlines()
data = self._get_data(lines, lang_id)
for audio_path, audio_file in archive:
audio_filename = audio_path.split("/")[-1]
if audio_filename not in data.keys():
continue
result = data[audio_filename]
extracted_audio_path = (
os.path.join(local_extracted_path, audio_filename)
if local_extracted_path is not None
else None
)
result["path"] = extracted_audio_path
result["audio"] = {"path": audio_path, "bytes": audio_file.read()}
yield key, result
key += 1