Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 47 new columns ({'feat_PrimalInitialGap', 'feat_Gap', 'feat_preinteger', 'feat_#MCP', 'feat_GlbRed', 'feat_RHS_dynamic', 'feat_pre_columns', 'feat_obj_dynamic', 'feat_LessThan', 'feat_pre_row', 'feat_GreaterThan', 'feat_DualInitialGap', 'feat_GlbFix', 'feat_PrimalDualGap', 'feat_has_varub', 'File Name', 'feat_Nodes', 'Log Name', 'feat_Columns', 'feat_IKN', 'feat_Nonzeros', 'feat_LPit/n', 'feat_#Cuts', 'feat_#Sepa', 'feat_PAC', 'feat_obj_density', 'feat_IntInf', 'feat_#Conf', 'feat_M01', 'feat_CON', 'feat_Equality', 'feat_GapClosed', 'feat_Active', 'feat_has_varlb', 'feat_COV', 'feat_CAR', 'feat_per_i', 'feat_per_b', 'feat_KNA', 'feat_Rows', 'feat_Coe_dynamic', 'feat_Time', 'feat_BIN', 'feat_MI', 'feat_PAR', 'feat_EQK', 'feat_Symmetries'}) and 1 missing columns ({'NAME COPTPROB'}). This happened while the csv dataset builder was generating data using hf://datasets/SEVANTORY/BenLOC/table_data/feat/feat_indset.csv (at revision c464d4d1f790101c4306163b2d7430cbd4ac1e1f) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast Log Name: string File Name: string feat_Nodes: double feat_Active: double feat_LPit/n: double feat_IntInf: double feat_GlbFix: double feat_GlbRed: double feat_#Cuts: double feat_#MCP: double feat_#Sepa: double feat_#Conf: double feat_Gap: double feat_Time: double feat_obj_density: double feat_pre_row: double feat_pre_columns: double feat_preinteger: double feat_obj_dynamic: double feat_RHS_dynamic: double feat_Coe_dynamic: double feat_DualInitialGap: double feat_PrimalDualGap: double feat_PrimalInitialGap: double feat_GapClosed: double feat_Rows: double feat_Columns: double feat_Nonzeros: double feat_per_i: double feat_per_b: double feat_has_varlb: double feat_has_varub: double feat_Equality: double feat_GreaterThan: double feat_LessThan: double feat_PAR: double feat_PAC: double feat_COV: double feat_CAR: double feat_EQK: double feat_BIN: double feat_KNA: double feat_IKN: double feat_M01: double feat_MI: double feat_CON: double feat_Symmetries: int64 -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 6089 to {'NAME COPTPROB': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 47 new columns ({'feat_PrimalInitialGap', 'feat_Gap', 'feat_preinteger', 'feat_#MCP', 'feat_GlbRed', 'feat_RHS_dynamic', 'feat_pre_columns', 'feat_obj_dynamic', 'feat_LessThan', 'feat_pre_row', 'feat_GreaterThan', 'feat_DualInitialGap', 'feat_GlbFix', 'feat_PrimalDualGap', 'feat_has_varub', 'File Name', 'feat_Nodes', 'Log Name', 'feat_Columns', 'feat_IKN', 'feat_Nonzeros', 'feat_LPit/n', 'feat_#Cuts', 'feat_#Sepa', 'feat_PAC', 'feat_obj_density', 'feat_IntInf', 'feat_#Conf', 'feat_M01', 'feat_CON', 'feat_Equality', 'feat_GapClosed', 'feat_Active', 'feat_has_varlb', 'feat_COV', 'feat_CAR', 'feat_per_i', 'feat_per_b', 'feat_KNA', 'feat_Rows', 'feat_Coe_dynamic', 'feat_Time', 'feat_BIN', 'feat_MI', 'feat_PAR', 'feat_EQK', 'feat_Symmetries'}) and 1 missing columns ({'NAME COPTPROB'}). This happened while the csv dataset builder was generating data using hf://datasets/SEVANTORY/BenLOC/table_data/feat/feat_indset.csv (at revision c464d4d1f790101c4306163b2d7430cbd4ac1e1f) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
NAME COPTPROB
string |
---|
OBJSENSE |
MIN |
ROWS |
N __OBJ___ |
L C1 |
L C3 |
L C4 |
L C5 |
L C9 |
L C11 |
L C12 |
L C13 |
L C14 |
L C15 |
L C16 |
L C17 |
L C18 |
L C19 |
L C20 |
L C21 |
L C22 |
L C24 |
L C26 |
L C27 |
L C28 |
L C30 |
L C31 |
L C33 |
L C34 |
L C36 |
L C39 |
L C41 |
L C44 |
L C46 |
L C47 |
L C48 |
L C49 |
L C50 |
L C52 |
L C54 |
L C55 |
L C56 |
L C57 |
L C59 |
L C60 |
L C62 |
L C63 |
L C64 |
L C68 |
L C72 |
L C75 |
L C77 |
L C78 |
L C79 |
L C81 |
L C82 |
L C83 |
L C84 |
L C86 |
L C87 |
L C89 |
L C90 |
L C93 |
L C94 |
L C96 |
L C97 |
L C99 |
L C102 |
L C103 |
L C104 |
L C105 |
L C106 |
L C108 |
L C109 |
L C111 |
L C112 |
L C114 |
L C115 |
L C118 |
L C119 |
L C120 |
L C122 |
L C123 |
L C124 |
L C125 |
L C126 |
L C127 |
L C129 |
L C130 |
L C131 |
L C132 |
L C134 |
L C135 |
L C136 |
L C138 |
L C140 |
L C141 |
L C142 |
L C143 |
L C145 |
Datasets of ML4MOC
Presolved Data is stored in .\instance
. The folder structure after the datasets are set up looks as follows
instances/
MIPLIB/ -> 1065 instances
set_cover/ -> 3994 instances
independent_set/ -> 1604 instances
nn_verification/ -> 3104 instances
load_balancing/ -> 2286 instances
Dataset Description
MIPLIB
Heterogeneous dataset from MIPLIB 2017, a well-established benchmark for evaluating MILP solvers. The dataset includes a diverse set of particularly challenging mixed-integer programming (MIP) instances, each known for its computational difficulty.
Set Covering
This dataset consists of instances of the classic Set Covering Problem, which can be found here. Each instance requires finding the minimum number of sets that cover all elements in a universe. The problem is formulated as a MIP problem.
Maximum Independent Set
This dataset addresses the Maximum Independent Set Problem, which can be found here. Each instance is modeled as a MIP, with the objective of maximizing the size of the independent set.
NN Verification
This “Neural Network Verification” dataset is to verify whether a neural network is robust to input perturbations can be posed as a MIP. The MIP formulation is described in the paper On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models (Gowal et al., 2018). Each input on which to verify the network gives rise to a different MIP.
Load Balancing
This dataset is from NeurIPS 2021 Competition. This problem deals with apportioning workloads. The apportionment is required to be robust to any worker’s failure. Each instance problem is modeled as a MILP, using a bin-packing with an apportionment formulation.
Dataset Spliting
Each dataset was split into a training set $D_{\text{train}}$ and a testing set $D_{\text{test}}$, following an approximate 80-20 split. Moreover, we split the dataset by time and "optimality", which means according to the proportion of optimality for each parameter is similar in training and testing sets. This ensures a balanced representation of both temporal variations and the highest levels of parameter efficiency in our data partitions.
- Downloads last month
- 41