Dataset Viewer
Auto-converted to Parquet
Index
stringlengths
1
5
Challenge
stringlengths
41
1.55k
Answer in Latex
stringclasses
122 values
Answer in Sympy
stringlengths
1
774
Variation
stringclasses
31 values
Source
stringclasses
61 values
1
Compute the first 5 nonzero terms (not necessarily a quadratic polynomial) of the Maclaurin series of $ f(x) = e^{\sin(x)} $
1+x+\frac{x^2}{2}-\frac{x^4}{8}-\frac{x^5}{15}+\cdots
-x**5/15 - x**4/8 + x**2/2 + x + 1
Original
U-Math sequences_series 1ccc052c-9604-4459-a752-98ebdf3e0764
2
Find the (infinite) power series of $f(x) \cdot g(x)$ for given $f(x) = \sum_{n=1}^\infty \left(n \cdot x^n\right)$ and $g(x) = \sum_{n=1}^\infty \left(n \cdot x^n\right)$
\sum_{n=2}^\infty\left(\frac{1}{6}\cdot n\cdot\left(n^2-1\right)\cdot x^n\right)
Sum(n*x**n*(n**2 - 1), (n, 2, oo))/6
Original
U-Math sequences_series fb6418ae-3440-4258-9388-89d799fd859a
3
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = \sin(x) \cdot \cos\left(\frac{ \pi }{ 4 }\right) + \cos(x) \cdot \sin\left(\frac{ \pi }{ 4 }\right)$
\frac{1}{34560\cdot\sqrt{2}}\cdot\left(288\cdot x^5+1440\cdot x^4-5760\cdot x^3-17280\cdot x^2+34560\cdot x+34560\right)
sqrt(2)*(x**5 + 5*x**4 - 20*x**3 - 60*x**2 + 120*x + 120)/240
Original
U-Math sequences_series f89bd354-18c9-4f31-b91f-cf6421e24921
4
Compute the first 4 nonzero terms of the Maclaurin series of $f(x) = e^x \cdot \cos(x)$
1+x-\frac{x^3}{3}-\frac{x^4}{6}
-x**4/6 - x**3/3 + x + 1
Original
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
5
Compute $\lim_{x \to 0}\left(\frac{ 2 \cdot \cos(x)+4 }{ 5 \cdot x^3 \cdot \sin(x) }-\frac{ 6 }{ 5 \cdot x^4 }\right)$
\frac{1}{150}
1/150
Original
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
6
Evaluate $\lim_{x \to 0^{+}}\left(\left(\frac{ \tan\left(\frac{ x }{ 2 }\right) }{ \frac{ x }{ 2 } }\right)^{\frac{ 3 }{ x^2 }}\right)$
$e^{\frac{1}{4}}$
exp(1/4)
Original
U-Math differential_calc 363dd580-f1fc-4867-a6ef-db2a03139745
7
Evaluate $ \lim_{x \to 5} \left( \frac{ 3 \cdot x }{ x-5 }-\frac{ 3 }{ \ln\left(\frac{ x }{ 5 }\right) } \right) $
\frac{3}{2}
3/2
Original
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
8
Evaluate $ \lim_{x \to \infty} \left(x - x^2 \cdot \ln\left(1 + \frac{ 1 }{ x }\right)\right) $
\frac{1}{2}
1/2
Original
U-Math differential_calc efdc4110-cf56-4f37-bf54-40fdd5d58145
9
Evaluate $ \lim_{x \to 0^{+}} \left( \left( \frac{ \tan(2 \cdot x) }{ 2 \cdot x } \right)^{\frac{ 1 }{ 3 \cdot x^2 }} \right) $
e^{\frac{4}{9}}
e**(4/9)
Original
U-Math differential_calc 99a2304d-5d8e-4245-90da-a80651ca15d8
10
Evaluate $ \lim_{x \to 0}\left( \left| \frac{ -\sin(x) }{ x } \right| \right)^{\frac{ 1 }{ 4 \cdot x^2 }} $
e^{\frac{-1}{24}}
e**(-1/24)
Original
U-Math differential_calc 84c6a419-c103-41d5-aad5-dd8e690c6e88
11
Integrate $ \int \sin(x)^4 \cdot \cos(x)^6 dx $
$C+\frac{1}{320}\cdot\left(\sin(2\cdot x)\right)^5+\frac{1}{128}\cdot\left(\frac{3\cdot x}{2}-\frac{\sin(4\cdot x)}{2}+\frac{\sin(8\cdot x)}{16}\right)$
C + 3*x/256 + sin(2*x)**5/320 - sin(4*x)/256 + sin(8*x)/2048
Original
U-Math integral_calc 0c0ba3db-1470-4c36-975c-91ff5f51986f
12
Calculate the integral: $ \int \frac{ \sqrt[5]{x}+\sqrt[5]{x^4}+x \cdot \sqrt[5]{x} }{ x \cdot \left(1+\sqrt[5]{x^2}\right) } dx $
C+5\cdot\arctan\left(\sqrt[5]{x}\right)+\frac{5}{4}\cdot\sqrt[5]{x}^4
C + 5*x**(4/5)/4 + 5*atan(x**(1/5))
Original
U-Math integral_calc 126c4165-b3d5-4470-8412-08e79d9821cf
13
Solve the integral: $ \int \frac{ 1 }{ \sin(x)^7 \cdot \cos(x) } dx $
C+\ln\left(\left|\tan(x)\right|\right)-\frac{3}{2\cdot\left(\tan(x)\right)^2}-\frac{3}{4\cdot\left(\tan(x)\right)^4}-\frac{1}{6\cdot\left(\tan(x)\right)^6}
C + log(Abs(tan(x))) - 3 / (2 * tan(x)**2) - 3 / (4 * tan(x)**4) - 1 / (6 * tan(x)**6)
Original
U-Math integral_calc 00f6affb-905a-4109-a78e-2dde7a0b83accf
14
Compute the integral: $ -2 \cdot \int x^{-4} \cdot \left(4+x^2\right)^{\frac{ 1 }{ 2 }} dx $
C+\frac{1}{6}\cdot\left(\frac{4}{x^2}+1\right)\cdot\sqrt{\frac{4}{x^2}+1}
(C*x**2 + sqrt((x**2 + 4)/x**2)*(x**2 + 4)/6)/x**2
Original
U-Math integral_calc 05ea9929-8cbb-432b-bbbb-ec1e74c9f401
15
Solve the integral: $ \int \left(\frac{ x+4 }{ x-4 } \right)^{\frac{ 3 }{ 2 }} dx $
C+\sqrt{\frac{x+4}{x-4}}\cdot(x-20)-12\cdot\ln\left(\left|\frac{\sqrt{x-4}-\sqrt{x+4}}{\sqrt{x-4}+\sqrt{x+4}}\right|\right)
C + sqrt((x + 4)/(x - 4)) * (x - 20) - 12 * ln(Abs((sqrt(x - 4) - sqrt(x + 4)) / (sqrt(x - 4) + sqrt(x + 4))))
Original
U-Math integral_calc 08c72d46-1abd-49e1-9c9c-ce509902be6e
16
Compute the integral: $ \int \frac{ -1 }{ x^2 \cdot \left(3+x^3\right)^{\frac{ 5 }{ 3 }} } dx $
\frac{1}{9}\cdot\sqrt[3]{1+\frac{3}{x^3}}+\frac{1}{18\cdot\left(1+\frac{3}{x^3}\right)^{\frac{2}{3}}}
(x**3 + 2)/(6*x**3*(1 + 3/x**3)**(2/3))
Original
U-Math integral_calc 4c1292e1-d4b3-4acf-afaf-eaac62f2662d
17
Compute the integral: $ \int \frac{ 4 \cdot x+\sqrt{4 \cdot x-5} }{ 5 \cdot \sqrt[4]{4 \cdot x-5}+\sqrt[4]{(4 \cdot x-5)^3} } dx $
C+25\cdot\sqrt[4]{4\cdot x-5}+\frac{1}{5}\cdot\sqrt[4]{4\cdot x-5}^5-\frac{4}{3}\cdot\sqrt[4]{4\cdot x-5}^3-\frac{125}{\sqrt{5}}\cdot\arctan\left(\frac{1}{\sqrt{5}}\cdot\sqrt[4]{4\cdot x-5}\right)
C + (4*x - 5)**(5/4)/5 - 4*(4*x - 5)**(3/4)/3 + 25*(4*x - 5)**(1/4) - 25*sqrt(5)*atan(sqrt(5)*(4*x - 5)**(1/4)/5)
Original
U-Math integral_calc 147944c5-b782-48c5-a664-d66deb92d9a7
18
Solve the integral: $ \int \frac{ 3 }{ \sin(2 \cdot x)^7 \cdot \cos(-2 \cdot x) } dx $
C+\frac{3}{2}\cdot\left(\ln\left(\left|\tan(2\cdot x)\right|\right)-\frac{3}{2\cdot\left(\tan(2\cdot x)\right)^2}-\frac{3}{4\cdot\left(\tan(2\cdot x)\right)^4}-\frac{1}{6\cdot\left(\tan(2\cdot x)\right)^6}\right)
C + (3/2) * (log(Abs(tan(2*x))) - 3/(2 * tan(2*x)**2) - 3/(4 * tan(2*x)**4) - 1/(6 * tan(2*x)**6) )
Original
U-Math integral_calc 1db212f0-2fac-410d-969d-fe3b5b55d076
19
Solve the integral: $ \int \frac{ 1 }{ \sin(8 \cdot x)^5 } dx $
C+\frac{1}{128}\cdot\left(2\cdot\left(\tan(4\cdot x)\right)^2+6\cdot\ln\left(\left|\tan(4\cdot x)\right|\right)+\frac{1}{4}\cdot\left(\tan(4\cdot x)\right)^4-\frac{2}{\left(\tan(4\cdot x)\right)^2}-\frac{1}{4\cdot\left(\tan(4\cdot x)\right)^4}\right)
C + Rational(1, 128) * (2 * tan(4 * x)**2 + 6 * log(Abs(tan(4 * x))) + Rational(1, 4) * tan(4 * x)**4 - 2 / tan(4 * x)**2 - 1 / (4 * tan(4 * x)**4))
Original
U-Math integral_calc 275f7ceb-f331-4a3f-96ec-346e6d81b32a
20
Evaluate the integral: $ I = \int \left(x^3 + 3\right) \cdot \cos(2 \cdot x) dx $
\frac{1}{256}\cdot\left(384\cdot\sin(2\cdot x)+128\cdot x^3\cdot\sin(2\cdot x)+192\cdot x^2\cdot\cos(2\cdot x)-96\cdot\cos(2\cdot x)-256\cdot C-192\cdot x\cdot\sin(2\cdot x)\right)
-C + x**3*sin(2*x)/2 + 3*x**2*cos(2*x)/4 - 3*x*sin(2*x)/4 + 3*sin(2*x)/2 - 3*cos(2*x)/8
Original
U-Math integral_calc 47a11349-0386-4969-9263-d3cdfcc98cb9
21
Use factoring to calculate the following limit. $ \lim_{x \rightarrow K} \frac {{x}^4-K^4} {{x}^5-K^5} $
\frac{4}{5 K}
4/(5*K)
Original
UGMathBench Calculus_-_single_variable_0016
22
Find the limit. $ \lim_{x \to 0} \frac{1-\cos\!\left(10x\right)}{\cos^{2}\!\left(6x\right)-1}$
\frac{-25}{18}
-25/18
Original
UGMathBench Calculus_-_single_variable_0022
23
Evaluate the limit. $ \lim_{x\to 1} \dfrac{x^2+11x-12}{\ln x}=$
13
13
Original
UGMathBench Calculus_-_single_variable_0508
24
Evaluate the limit below, given that $f(t)=\left(\frac{4^t+6^t}{4}\right)^{1/t}$. $\lim\limits_{t\to+\infty} f(t)$
6
6
Original
UGMathBench Calculus_-_single_variable_0512
25
Calculate the integral. $\int_{2}^{\infty} 3x^{2}e^{-x^{3}} dx=$
\frac{1}{e^{8}}
e**(-8)
Original
UGMathBench Calculus_-_single_variable_0592
26
Evaluate the indefinite integral. $\int \tan^{3}\!\left(x\right)\sec^{9}\!\left(x\right) dx$
\frac{\sec^{11}{\left(x \right)}}{11} - \frac{\sec^{9}{\left(x \right)}}{9}
sec(x)**11/11 - sec(x)**9/9
Original
UGMathBench Calculus_-_single_variable_0604
27
Evaluate the indefinite integral. $\int 208 \cos^4(16x) dx$
78 x + \frac{13 \sin{\left(16 x \right)} \cos^{3}{\left(16 x \right)}}{4} + \frac{39 \sin{\left(16 x \right)} \cos{\left(16 x \right)}}{8}
78*x + 13*sin(16*x)*cos(16*x)**3/4 + 39*sin(16*x)*cos(16*x)/8
Original
UGMathBench Calculus_-_single_variable_0606
28
Evaluate the integral. $ \int \frac{10x^2-48x-38}{x^3-5x^2-8x+48} dx $
\frac{2 \left(\left(x - 4\right) \left(3 \log{\left(\left|{x - 4}\right| \right)} + 2 \log{\left(\left|{x + 3}\right| \right)}\right) + 5\right)}{x - 4}
2*((x - 4)*(3*log(Abs(x - 4)) + 2*log(Abs(x + 3))) + 5)/(x - 4)
Original
UGMathBench Calculus_-_single_variable_0612
29
Evaluate the integral. $ \int e^{x}\sqrt{64-e^{2x}} \;dx$ $=$
\frac{e^{x} \sqrt{64 - e^{2 x}}}{2} + 32 \operatorname{asin}{\left(\frac{e^{x}}{8} \right)}
e**x*sqrt(64 - e**(2*x))/2 + 32*asin(e**x/8)
Original
UGMathBench Calculus_-_single_variable_0624
30
Evaluate $\lim_{x \to 0} \frac{e^{-3x^3}-1+3x^3-\frac{9}{2}x^6}{12x^9}$
\frac{-3}{8}
-3/8
Original
UGMathBench Calculus_-_single_variable_0939
31
Solve the following first-order differential equation: $ \frac{dy}{dx} + 2y = e^{-x}, \quad y(0) = 1. $
e^{-x}
e**(-x)
Original
MathOdyssey Problem 340 from Differential Equations - College Math
32
Consider the differential equation $\frac{dy}{dx} = xy$. Find the value of $y(\sqrt{2})$ given that $y(0) = 2$.
2e
2*e
Original
MathOdyssey Problem 339 from Differential Equations - College Math
33
Evaluate the following limit: $ \lim_{n \to \infty} \left(\sqrt{n^2+2n-1}-\sqrt{n^2+3}\right). $
1
1
Original
MathOdyssey Problem 315 from Calculus and Analysis - College Math
34
Evaluate $\lim\limits_{x\to 4}\frac{x-4}{\sqrt{x}-2}$.
4
4
Original
MathOdyssey Problem 317 from Calculus and Analysis - College Math
35
Evaluate $\displaystyle{\int_0^4(2x-\sqrt{16-x^2})dx}$.
16 - 4 \pi
16 - 4*pi
Original
MathOdyssey Problem 325 from Calculus and Analysis - College Math
36
Evaluate the series $\sum\limits_{n=1}^\infty\frac{1}{(n+1)(n+3)}$.
\frac{5}{12}
5/12
Original
MathOdyssey Problem 326 from Calculus and Analysis - College Math
37
Evaluate the limit $\lim\limits_{x\to 0}\frac{(1+x)^{\frac{1}{x}}-e}{x}$.
-\frac{ e}{2}
-e/2
Original
MathOdyssey Problem 327 from Calculus and Analysis - College Math
38
Evaluate the series $\sum\limits_{n=0}^\infty \frac{1}{2n+1}\left(\frac12\right)^{2n+1}$.
\ln\sqrt{3}
log(3)/2
Original
MathOdyssey Problem 328 from Calculus and Analysis - College Math
39
Evaluate the limit $\lim\limits_{n\to\infty}\sum\limits_{k=0}^{n-1}\frac{1}{\sqrt{n^2-k^2}}$.
\frac{\pi}{2}
pi/2
Original
MathOdyssey Problem 329 from Calculus and Analysis - College Math
40
Evaluate the iterated integral $\displaystyle{\int_0^1dy\int_y^1(e^{-x^2}+e^x)dx}$.
\frac{3}{2}-\frac12 e^{-1}
(3*e - 1)/(2*e)
Original
MathOdyssey Problem 336 from Calculus and Analysis - College Math
41
What is the integral of $ 2x - x^7atan(3) $
x^2-\frac{1}{8} x^8 \tan ^{-1}(3)
-x**8*atan(3)/8 + x**2
Original
GHOSTS Symbolic Integration Q97
42
What is the integral of $ 1 + x + x^3*cosh(2) $
\frac{1}{4} x^4 \cosh (2)+\frac{x^2}{2}+x
x**4*cosh(2)/4 + x**2/2 + x
Original
GHOSTS Symbolic Integration Q98
43
What is the integral of $ 12 + 6cosh(x) $
12 x + 6 \sinh{\left(x \right)}
12*x + 6*sinh(x)
Original
GHOSTS Symbolic Integration Q90
44
What is the integral of 4x^7 + sin(1 + x)
\frac{x^8}{2} - \cos(1+x)
x**8/2 - cos(x + 1)
Original
GHOSTS Symbolic Integration Q14
45
What is the integral of 2x + 2x^2 + x[(x + x*e^x)^-1]
\frac{2 x^3}{3}+x^2-2 \tanh ^{-1}\left(2 e^x+1\right)
2*x**3/3 + x**2 + x - log(exp(x) + 1)
Original
GHOSTS Symbolic Integration Q7
46
What is the integral of -x + cos[ln(sin(3))] * ln(3x)
-\frac{1}{2} x (x-2 \log (3 x) \cos (\log (\sin (3)))+2 \cos (\log (\sin (3))))
-1*x*((x - 2*log(3*x, E)*cos(log(sin(3), E))) + 2*cos(log(sin(3), E)))/2
Original
GHOSTS Symbolic Integration Q15
47
What is the integral of 3x - 4*[cos(x+3)]*x^2
\frac{3 x^2}{2}-4 \left(x^2-2\right) \sin (x+3)-8 x \cos (x+3)
-8*x*cos(x + 3) + ((3*x**2)/2 - 4*(x**2 - 2)*sin(x + 3))
Original
GHOSTS Symbolic Integration Q18
48
What is the integral of -3 + atan(x) + ln(tanh(3))
x \arctan(x) - \frac{1}{2} \ln(1 + x^2) + x \ln(\tanh(3)) - 3x + C
x*atan(x) - 3*x + x*log(tanh(3)) - log(x**2 + 1)/2
Original
GHOSTS Symbolic Integration Q20
49
What is the integral of e^{x \left(x + 4\right)^{2}} \left(x + 4\right) \left(3 x + 4\right)
e^{x (x+4)^2}
e**(x*(x + 4)**2)
Original
GHOSTS Symbolic Integration Q22
50
What is the integral of -e^{3x} * sin(e^{3x})
\frac{1}{3} \cos \left(e^{3 x}\right)
cos(e**(3*x))/3
Original
GHOSTS Symbolic Integration Q29
51
If $\log _{2} x-2 \log _{2} y=2$, determine $y$, as a function of $x$
\frac{1}{2} \sqrt{x}
sqrt(x)/2
Original
OlympiadBench oe_to_maths_en_comp 2498
52
If $f(x)=2 x+1$ and $g(f(x))=4 x^{2}+1$, determine an expression for $g(x)$.
x^2-2 x+2
x**2 - 2*x + 2
Original
OlympicArena Math_1381
53
Solve the following integral $\int_0^{\frac{\pi}{2}} \frac{x \sin(2x)}{1 + \cos^2(2x)} dx$
Pi^2 / 16
Pi**2 / 16
Original
OBMU 2019 - Q21
54
Solve the following integral: $\int_{1}^{2} \frac{e^x(x - 1)}{x(x + e^x)} dx$
\ln\left( \frac{2 + e^2}{2 + 2e} \right)
log((e**2 + 2)/(2*e + 2), E)
Original
OBMU 2019 - Q18
55
Solve the following integral: $\int_{0}^{\pi} \log(\sin(x)) dx$
-\pi \log (2)
-pi*log(2, E)
Original
OBMU 2019 - Q22
56
Evaluate the following hypergeometric function. Return a closed-form symbolic answer. $ {}_2F_1\left( \begin{array}{c} 1,1\ \\ 2 \end{array}; -1 \right) $
\log (2)
log(2, E)
Original
ASyMOB Hypergeometrics Q1
57
Evaluate the following hypergeometric function. Return a closed-form symbolic answer. $ {}_2F_1\left( \begin{array}{c} 1,1 \\ 3 \end{array}; -2 \right) $
\frac{3 \log (3)}{2}-1
-1 + (3*log(3, E))/2
Original
ASyMOB Hypergeometrics Q2
58
Evaluate the following hypergeometric function. Return a closed-form symbolic answer. $ {}_3F_2\left( \begin{array}{c} 1,1,1 \\ 2,2 \end{array}; -1 \right) $
\frac{\pi ^2}{12}
pi**2/12
Original
ASyMOB Hypergeometrics Q3
59
Evaluate the following hypergeometric function. Return a closed-form symbolic answer. $ {}_3F_2\left( \begin{array}{c} -1,-1,-1 \\ -1,-1 \end{array}; x \right) $
1-x
1-x
Original
ASyMOB Hypergeometrics Q4
60
Solve the following integral. Return a closed-form symbolic answer. \int \frac{ 1 }{ 1 + x^3 } dx
-\frac{1}{6} \log \left(x^2-x+1\right)+\frac{1}{3} \log (x+1)+\frac{\tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)}{\sqrt{3}}
(log(x + 1, E)/3 - 1*log((x**2 - x) + 1, E)/6) + atan((2*x - 1)/(sqrt(3)))/(sqrt(3))
Original
ASyMOB Hypergeometrics Q5
61
Solve the following integral. \int \frac{(4 + (4 - 1)x^1)x^{2-1}}{2(1 + x^1 + x^{4})\sqrt{1 + x^1}} dx
\tan ^{-1}\left(\frac{x^2}{\sqrt{x+1}}\right)
atan(x**2/sqrt(x + 1))
Original
ASyMOB Hypergeometrics Q6
62
Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = A e^{B \sin(x)} $, where A and B are symbolic constants.
\frac{1}{6} A \left(B^3-B\right) x^3+\frac{1}{2} A B^2 x^2+\frac{1}{120} A \left(B^5-10 B^3+B\right) x^5+\frac{1}{24} A \left(B^4-4 B^2\right) x^4+A B x+A
A*B**2*x**2/2 + A*B*x + A + x**5*A*(B**5 - 10*B**3 + B)/120 + x**4*A*(B**4 - 4*B**2)/24 + x**3*A*(B**3 - B)/6
Symbolic-2
U-Math sequences_series 1ccc052c-9604-4459-a752-98ebdf3e0764
63
Find the (infinite) power series of $f(x) \cdot g(x)$ for given $f(x) = \sum_{n=1}^\infty \left(A n \cdot (F x)^n\right)$ and $g(x) = \sum_{n=1}^\infty \left(B n \cdot (F x)^n\right$
\sum_{n=2}^\infty \frac{1}{6} A B n \left(n^2-1\right) F^n \cdot x^n
A*B*Sum(F**n*x**n*n*(n**2 - 1), (n, 2, oo))/6
Symbolic-3
U-Math sequences_series fb6418ae-3440-4258-9388-89d799fd859a
64
Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = F \left(\sin(A x) \cdot \cos\left(\frac{ B \pi }{ 4 }\right) + \cos(A x) \cdot \sin\left(\frac{ B \pi }{ 4 }\right)\right)$
\frac{1}{120} A^5 F x^5 \cos \left(\frac{\pi B}{4}\right)+\frac{1}{24} A^4 F x^4 \sin \left(\frac{\pi B}{4}\right)-\frac{1}{6} A^3 F x^3 \cos \left(\frac{\pi B}{4}\right)-\frac{1}{2} A^2 F x^2 \sin \left(\frac{\pi B}{4}\right)+A F x \cos \left(\frac{\pi B}{4}\right)+F \sin \left(\frac{\pi B}{4}\right)
F*(A**5*x**5*cos(B*pi/4) + 5*A**4*x**4*sin(B*pi/4) - 20*A**3*x**3*cos(B*pi/4) - 60*A**2*x**2*sin(B*pi/4) + 120*A*x*cos(B*pi/4) + 120*sin(B*pi/4))/120
Symbolic-3
U-Math sequences_series f89bd354-18c9-4f31-b91f-cf6421e24921
65
Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = F e^{A x} \cdot \cos(B x)$
F x^3 \left(\frac{A^3}{6}-\frac{A B^2}{2}\right)+\frac{1}{2} F x^2 \left(A^2-B^2\right)+F x^4 \left(\frac{A^4}{24}-\frac{A^2 B^2}{4}+\frac{B^4}{24}\right)+A F x+F
F*(4*A*x**3*(A**2 - 3*B**2) + 24*A*x + x**4*(A**4 - 6*A**2*B**2 + B**4) + 12*x**2*(A**2 - B**2) + 24)/24
Symbolic-3
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1
66
Compute $\lim_{x \to 0}\frac{(2 \cos (F x)+4) \csc (F x)}{5 A (F x)^3}-\frac{6}{5 A (F x)^4}$
\frac{1}{A 150}
1/(150*A)
Symbolic-2
U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43
67
Evaluate $ \lim_{x \to 0^+} A \left( \frac{ \tan\left( \frac{B x}{2} \right) }{ \frac{B x}{2} } \right)^{ \frac{F 3}{(B x)^2} } $
$A /cdot e^{\frac{F}{4}}$
A*e**(F/4)
Symbolic-3
U-Math differential_calc 363dd580-f1fc-4867-a6ef-db2a03139745
68
Evaluate $ \lim_{x \to A 5} \left( \frac{ 3 B x }{ x - 5 A }-\frac{ 3 B }{ \ln\left(\frac{ x }{ 5 A }\right) } \right)^{F} $
\left( \frac{3B}{2} \right)^F
(3*B/2)**F
Symbolic-3
U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e
69
Evaluate $ \lim_{x \to \infty} \left(A x - A F x^2 \cdot \ln\left(1 + \frac{ 1 }{ F x }\right)\right)^(1 B) $
\left(\frac{A}{2 F}\right)^{B}
(A/(2*F))**B
Symbolic-3
U-Math differential_calc efdc4110-cf56-4f37-bf54-40fdd5d58145
70
Evaluate $ \lim_{x \to 0^+} F \left( \frac{\tan(A x)}{A x} \right)^{\frac{1 H}{3 B x^2}} $
F e^{\frac{A^{2} H}{9 B}}
F*e**((A**2*H)/((9*B)))
Symbolic-4
U-Math differential_calc 99a2304d-5d8e-4245-90da-a80651ca15d8
71
Evaluate $ \lim_{x \to 0} \left| F \left( \frac{-\sin(A x)}{A x} \right)^{\frac{1}{4 B x^2}} \right| $
\left( e^{-\frac{A^2}{6B}} \right)^{\frac{1}{4}} \left| F \right|
(exp(-A**2 / (6 * B)))**Rational(1, 4) * Abs(F)
Symbolic-3
U-Math differential_calc 84c6a419-c103-41d5-aad5-dd8e690c6e88
72
Integrate $ \int B \sin(F x)^4 \cdot \cos(F x)^6 dx $
\frac{\frac{B \sin{\left(2 F x \right)}}{512} - \frac{B \sin{\left(4 F x \right)}}{256} - \frac{B \sin{\left(6 F x \right)}}{1024} + \frac{B \sin{\left(8 F x \right)}}{2048} + \frac{B \sin{\left(10 F x \right)}}{5120} + \frac{F x \left(256 A + 3 B\right)}{256}}{F}
(3*B*x)/256 + (B*sin(2*F*x))/(512*F) - (B*sin(4*F*x))/(256*F) - (B*sin(6*F*x))/(1024*F) + (B*sin(8*F*x))/(2048*F) + (B*sin(10*F*x))/(5120*F)
Symbolic-2
U-Math integral_calc 0c0ba3db-1470-4c36-975c-91ff5f51986f
73
Solve the following integral. Assume A,B,F,G are real and positive. $ \int \frac{A \sqrt[5]{x} + B x^{4/5} + F x^{6/5}}{x \left(1 G+x^{2/5}\right)} dx $
\frac{5}{4} \left(\frac{4 A \tan ^{-1}\left(\frac{\sqrt[5]{x}}{\sqrt{G}}\right)}{\sqrt{G}}+2 x^{2/5} (B-F G)+2 G (F G-B) \log \left(G+x^{2/5}\right)+F x^{4/5}\right)
(5/4)*(F*x**(4/5) + ((2*(x**(2/5)*(B - F*G)) + (4*(A*atan(x**(1/5)/(sqrt(G)))))/(sqrt(G))) + 2*(G*(-B + F*G)*log(G + x**(2/5), E))))
Symbolic-4
U-Math integral_calc 126c4165-b3d5-4470-8412-08e79d9821cf
74
Solve the following integral. Assume A,B,F are real and positive $ \int \frac{A \csc ^7(F x) \sec (F x)}{1 B} dx $
-\frac{A \left(2 \csc ^6(F x)+3 \csc ^4(F x)+6 \csc ^2(F x)+12 (\log (\cos (F x))-\log (\sin (F x)))\right)}{12 B F}
-A*(-12*log(sin(F*x)) + 12*log(cos(F*x)) + 2*csc(F*x)**6 + 3*csc(F*x)**4 + 6*csc(F*x)**2)/(12*B*F)
Symbolic-3
U-Math integral_calc 00f6affb-905a-4109-a78e-2dde7a0b83accf
75
Solve the following integral. Assume A,B,F are real and positive. $ \int -\frac{2 A \sqrt{4 B + (F x)^2}}{ (F x)^4} dx $
\frac{A \left(4 B+F^2 x^2\right)^{3/2}}{6 B F^4 x^3}
A*(4*B + F**2*x**2)**(3/2)/(6*B*F**4*x**3)
Symbolic-3
U-Math integral_calc 05ea9929-8cbb-432b-bbbb-ec1e74c9f401
76
Solve the following integral. Assume A,B,F are real and positive. $ \int \left(\frac{B (4 A + F x)}{F x - 4 A}\right)^{3/2} dx $
\frac{B \sqrt{\frac{B (4 A+F x)}{F x-4 A}} \left(\sqrt{4 A+F x} (F x-20 A)+24 A \sqrt{F x-4 A} \tanh ^{-1}\left(\frac{\sqrt{4 A+F x}}{\sqrt{F x-4 A}}\right)\right)}{F \sqrt{4 A+F x}}
B*sqrt(-B*(4*A + F*x)/(4*A - F*x))*(24*A*sqrt(-4*A + F*x)*atanh(sqrt(4*A + F*x)/sqrt(-4*A + F*x)) + (-20*A + F*x)*sqrt(4*A + F*x))/(F*sqrt(4*A + F*x))
Symbolic-3
U-Math integral_calc 08c72d46-1abd-49e1-9c9c-ce509902be6e
77
Solve the following integral. Assume A,B,F,G are real and positive. $ \int \frac{ -1 A }{B (F x)^2 \cdot \left(3 G + (F x)^3\right)^{\frac{ 5 }{ 3 }} } dx $
\frac{A \left(F^3 x^3+2 G\right)}{6 B F^2 G^2 x \left(F^3 x^3+3 G\right)^{2/3}}
A*(F**3*x**3 + 2*G)/(6*B*F**2*G**2*x*(F**3*x**3 + 3*G)**(2/3))
Symbolic-4
U-Math integral_calc 4c1292e1-d4b3-4acf-afaf-eaac62f2662d
78
Solve the following integral. Assume A,B,F,G,H are real and positive. $ \int \frac{\sqrt{4 A x-5 B}+4 F x}{5 G \sqrt[4]{4 A x - 5 B} + H (4 A x - 5 B)^{3/4}} dx $
\frac{\frac{\sqrt{H} \left(20 A^2 H^2 x+375 F G^2 \sqrt{4 A x-5 B}+5 B H \left(12 F H \sqrt{4 A x-5 B}-5 A H+25 F G\right)+A H \left(12 F H x \sqrt{4 A x-5 B}-75 G \sqrt{4 A x-5 B}-100 F G x\right)\right)}{\sqrt[4]{4 A x-5 B}}-75 \sqrt{5} \sqrt{G} \left(-A G H+B F H^2+5 F G^2\right) \tan ^{-1}\left(\frac{\sqrt{H} \sqrt[4]{4 A x-5 B}}{\sqrt{5} \sqrt{G}}\right)}{15 A^2 H^{7/2}}
(75*sqrt(5)*sqrt(G)*(4*A*x - 5*B)**(1/4)*(A*G*H - B*F*H**2 - 5*F*G**2)*atan(sqrt(5)*sqrt(H)*(4*A*x - 5*B)**(1/4)/(5*sqrt(G))) + sqrt(H)*(20*A**2*H**2*x + A*H*(-100*F*G*x + 12*F*H*x*sqrt(4*A*x - 5*B) - 75*G*sqrt(4*A*x - 5*B)) + 5*B*H*(-5*A*H + 25*F*G + 12*F*H*sqrt(4*A*x - 5*B)) + 375*F*G**2*sqrt(4*A*x - 5*B)))/(15*A**2*H**(7/2)*(4*A*x - 5*B)**(1/4))
Symbolic-5
U-Math integral_calc 147944c5-b782-48c5-a664-d66deb92d9a7
79
Solve the following integral. Assume A,B,F are real and positive. $ \int \frac{3 A \csc ^7(2 F x) \sec (2 F x)}{1 B} dx $
-\frac{A \left(2 \csc ^6(2 F x)+3 \csc ^4(2 F x)+6 \csc ^2(2 F x)+12 (\log (\cos (2 F x))-\log (\sin (2 F x)))\right)}{8 B F}
-A*(-12*log(sin(2*F*x)) + 12*log(cos(2*F*x)) + 2*csc(2*F*x)**6 + 3*csc(2*F*x)**4 + 6*csc(2*F*x)**2)/(8*B*F)
Symbolic-3
U-Math integral_calc 1db212f0-2fac-410d-969d-fe3b5b55d076
80
Solve the following integral. Assume A,F are real and positive. $ \int A \csc^5 (8 F x) dx $
-\frac{A \left(\csc ^4(4 F x)+6 \csc ^2(4 F x)-\sec ^4(4 F x)-6 \sec ^2(4 F x)+24 (\log (\cos (4 F x))-\log (\sin (4 F x)))\right)}{512 F}
-A*(-24*log(sin(4*F*x)) + 24*log(cos(4*F*x)) + csc(4*F*x)**4 + 6*csc(4*F*x)**2 - sec(4*F*x)**4 - 6*sec(4*F*x)**2)/(512*F)
Symbolic-2
U-Math integral_calc 275f7ceb-f331-4a3f-96ec-346e6d81b32a
81
Solve the following integral. Assume A,B,F are real and positive. $ \int \cos (2 F x) \left(A (F x)^3+3 B \right) dx $
\frac{2 \sin (2 F x) \left(A F x \left(2 F^2 x^2-3\right)+6 B\right)+3 A \left(2 F^2 x^2-1\right) \cos (2 F x)}{8 F}
((2*A*F*x*(2*F**2*x**2 - 3) + 12*B)*sin(2*F*x) + 3*A*(2*F**2*x**2 - 1)*cos(2*F*x))/(8*F)
Symbolic-3
U-Math integral_calc 47a11349-0386-4969-9263-d3cdfcc98cb9
82
Use factoring to calculate the following limit. Assume A,B,F are real and positive. $ \lim_{x \rightarrow K} \frac{(F x)^{4 B} - K^{4 B}}{A \left((F x)^{5 B}- K^{5 B}\right)} $
\frac{4 K^{-B}}{5 A}
4/(5*A*K**B)
Symbolic-3
UGMathBench Calculus_-_single_variable_0016
83
Calculate the following limit. Assume A,B,F are real and positive. $ \frac{1 B - B \cos (10 F x)}{A \cos ^2(6 F x) - 1 A} $
-\frac{25 B}{18 A}
-25*B/(18*A)
Symbolic-3
UGMathBench Calculus_-_single_variable_0022
84
Calculate the following limit. Assume A,B,F are real and positive. $ \frac{A (F x)^2+11 A F x - 12 A}{B \log (F x)} $
\frac{13 A}{B}
13*A/B
Symbolic-3
UGMathBench Calculus_-_single_variable_0508
85
Calculate the following limit. Assume A,F are real and A>1. $ \lim\limits_{x\to+\infty} 4^{-\frac{1}{F x}} \left(\frac{(4 A)^{F x} + (6 A)^{F x} }{1 A}\right)^{\frac{1}{F x}} $
6 A
6*A
Symbolic-2
UGMathBench Calculus_-_single_variable_0512
86
Calculate the following integral. Assume A,B, F are real and positive. $\int_{2 B}^{\infty} 3 A (F x)^2 e^{- (F x)^3} dx=$
\frac{A e^{-8 B^3 F^3}}{F}
A/(F*e**(8*B**3*F**3))
Symbolic-3
UGMathBench Calculus_-_single_variable_0592
87
Evaluate the indefinite integral. Assume A, F are real and positive. $\int A \tan ^3(F x) \sec ^9(F x) dx$
\frac{A \sec ^9(F x) \left(9 \sec ^2(F x)-11\right)}{99 F}
A*(9*sec(F*x)**2 - 11)*sec(F*x)**9/(99*F)
Symbolic-2
UGMathBench Calculus_-_single_variable_0604
88
Evaluate the indefinite integral. Assume A, F are real and positive. $\int 208 A \cos ^4(16 F x) dx$
\frac{13 A (192 F x+8 \sin (32 F x)+\sin (64 F x))}{32 F}
13*A*(192*F*x + 8*sin(32*F*x) + sin(64*F*x))/(32*F)
Symbolic-2
UGMathBench Calculus_-_single_variable_0606
89
Evaluate the integral. Assume A, B, F, G are real and positive. $ \int \frac{-38 A+10 B (F x)^2-48 F G x}{(F x)^3-5 (F x)^2-8 F x+48} dx $
\frac{2 \left(\frac{7 (19 A-80 B+96 G)}{F x-4}+(19 A+200 B-72 G) \log (4-F x)+(-19 A+45 B+72 G) \log (F x+3)\right)}{49 F}
2*(133*A - 560*B + 672*G + (F*x - 4)*((-19*A + 45*B + 72*G)*log(F*x + 3) + (19*A + 200*B - 72*G)*log(-F*x + 4)))/(49*F*(F*x - 4))
Symbolic-4
UGMathBench Calculus_-_single_variable_0612
90
Evaluate the integral. Assume A,B,F are real and positive. $ \int A e^{F x} \sqrt{64 B-e^{2 F x}} \;dx$
\frac{A \left(e^{F x} \sqrt{64 B-e^{2 F x}}+64 B \tan ^{-1}\left(\frac{e^{F x}}{\sqrt{64 B-e^{2 F x}}}\right)\right)}{2 F}
A*(64*B*atan(e**(F*x)/sqrt(64*B - e**(2*F*x))) + e**(F*x)*sqrt(64*B - e**(2*F*x)))/(2*F)
Symbolic-3
UGMathBench Calculus_-_single_variable_0624
91
Evaluate the following limit. Assume A,B,F are real and positive. $\lim_{x \to 0} \frac{-\frac{9}{2} (1 B)^2 (F x)^6+3 B F^3 x^3+e^{-3 B (F x)^3}-1}{12 A (F x)^9} $
-\frac{3 B^3}{8 A}
-3*B**3/(8*A)
Symbolic-3
UGMathBench Calculus_-_single_variable_0939
92
Solve the following first-order differential equation: Assume A,B,F,G are real and positive. $ A y'(x)+2 B y(x)=F e^{-x}, \quad y(0)=1 G.$
\frac {e^{-\frac{2 B x}{A}} \left(F \left(-e^{x \left(\frac{2 B}{A}-1\right)}\right)+A G-2 B G+F\right)}{A-2 B}
(A*G - 2*B*G + F + F*(-e**x*((-A + 2*B)/A)))/(e**(2*B*x/A)*(A - 2*B))
Symbolic-4
MathOdyssey Problem 340 from Differential Equations - College Math
93
Consider the differential equation $A y'(x)=B x y(x)$. Find the value of $y(\sqrt{2})$ given that $y(0) = 2 F$. Assume A,B,F are real and positive.
2 F e^{\frac{B}{A}}
2*F*e**(B/A)
Symbolic-3
MathOdyssey Problem 339 from Differential Equations - College Math
94
Evaluate the following limit: $ \lim_{x \to \infty} \sqrt{-(1 B) + H (F x)^2 + 2 F G x}-\sqrt{3 A + H (F x)^2} .$ Assume A,B,F,G,H are real and positive.
\frac{G}{\sqrt{H}}
G/sqrt(H)
Symbolic-5
MathOdyssey Problem 315 from Calculus and Analysis - College Math
95
Evaluate $\lim\limits_{x\to \frac{4 B}{1 F}} \frac{A (F x - 4 B)}{\sqrt{F x}-2 \sqrt{1 B}} $. Assume A,B,F are real and positive.
4 A \sqrt{B}
4*A*sqrt(B)
Symbolic-3
MathOdyssey Problem 317 from Calculus and Analysis - College Math
96
Evaluate $\int_0^(4 B) (2 A x - \sqrt{(4 B F)^2 - (F x)^2}) dx$. Assume A,B,F are real and positive.
\frac{1}{4} B^2 (4 A-\pi F)
B**2*(A - F*pi/4)
Symbolic-3
MathOdyssey Problem 325 from Calculus and Analysis - College Math
97
Evaluate the series $\sum\limits_{x=1}^\infty \frac{1 A}{B (1 F + x) (1 F+x+2)} $. Assume A,B,F are real and positive.
\frac{A (2 F+3)}{2 B (F+1) (F+2)}
A*(2*F + 3)/(2*(F + 2)*B*(F + 1))
Symbolic-3
MathOdyssey Problem 326 from Calculus and Analysis - College Math
98
Evaluate the limit $\lim\limits_{x \to 0} \frac{(A x+1)^{\frac{1}{A x}}-e}{B x} $. Assume A,B are real and positive.
-\frac{e A}{2 B}
-A*e/(2*B)
Symbolic-2
MathOdyssey Problem 327 from Calculus and Analysis - College Math
99
Evaluate the series $\sum\limits_{n=0}^\infty \frac{ \left(\frac{1}{2 B}\right)^{A (2 n+1)}}{F (2 n+1)} $. Assume A,B,F are real and positive.
\frac{\tanh ^{-1}\left(2^{-A} \left(\frac{1}{B}\right)^A\right)}{F}
atanh((1/(2*B))**A)/F
Symbolic-3
MathOdyssey Problem 328 from Calculus and Analysis - College Math
100
Evaluate the limit $\lim\limits_{n\to\infty}\sum\limits_{k=0}^{n-1}\frac{1 A}{B \sqrt{F n^2-k^2}}$ Assume A,B, $F \ge 1$ are real and positive.
\frac{A}{B} \arcsin\left(\frac{1}{\sqrt{F}}\right)
A*asin(1/sqrt(F))/B
Symbolic-3
MathOdyssey Problem 329 from Calculus and Analysis - College Math
End of preview. Expand in Data Studio

ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark

This dataset is associated with the paper "ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark".

Abstract

Large language models (LLMs) are rapidly approaching the level of proficiency in university-level symbolic mathematics required for applications in advanced science and technology. However, existing benchmarks fall short in assessing the core skills of LLMs in symbolic mathematics—such as integration, limits, differential equations, and algebraic simplification.

To address this gap, we introduce ASyMOB (pronounced Asimov, in tribute to the renowned author), a novel assessment framework focused exclusively on symbolic manipulation, featuring 17,092 unique math challenges, organized by similarity and complexity. ASyMOB enables analysis of LLM failure root-causes and generalization capabilities by comparing performance in problems that differ by simple numerical or symbolic "perturbations".

Evaluated LLMs exhibit substantial degradation in performance for all perturbation types (up to -70.3%), suggesting reliance on memorized patterns rather than deeper understanding of symbolic math, even among models achieving high baseline accuracy. Comparing LLM performance to computer algebra systems (CAS, e.g. SymPy), we identify examples where CAS fail while LLMs succeed, as well as problems solved only when combining both approaches. Models capable of integrated code execution yielded higher accuracy compared to their performance without code, particularly stabilizing weaker models (up to +33.1% for certain perturbation types).

Notably, the most advanced models (o4-mini, Gemini 2.5 Flash) demonstrate not only high symbolic math proficiency (scoring 96.8% and 97.6% on the unperturbed set), but also remarkable robustness against perturbations, (-21.7% and -21.2% vs. average -50.4% for the other models). This may indicate a recent "phase transition" in the generalization capabilities of frontier LLMs. It remains to be seen whether the path forward lies in deeper integration with more sophisticated external tools, or in developing models so capable that symbolic math systems like CAS become unnecessary.

ASyMOB Dataset Generation

See the ASyMOB code repository for the data generation code and seed CSV.

ASyMOB_Generation.py generates a diverse set of mathematical question variants from a seed CSV file. It leverages the SymPy library for symbolic mathematics to create various perturbations of original questions, including symbolic, numeric, and equivalence-based transformations. The generated questions are then saved to a JSON file.

Usage

  1. Prepare your seed data: Ensure you have a CSV file named Seed_and_Max_Symbolic_Perturbations.csv in the same directory as the script. This CSV should contain the seed mathematical questions, their maximal symbolic perturbations, and answers as SymPy expressions.

    The expected fields in Seed_and_Max_Symbolic_Perturbations.csv are:

    • Challenge: The mathematical question in LaTeX format, including assumptions regarding variables or other mathematical details.
    • Answer in LaTeX (optional): The answer to the question, represented as a LaTeX string.
    • Answer in Sympy: The answer to the question, represented as a SymPy expression string.
    • Variation: "Original" or "Symbolic".
    • Source: Identifies the origin of the question.
  2. Run the script:

    python ASyMOB_Generation.py
    
  3. Output: The script will generate a JSON file named Full_ASyMOB_Dataset.json in the same directory. This file will contain all the original seed and symbolic questions along with their newly generated symbolic, numeric, and equivalence-based variants.

    The fields in Full_ASyMOB_Dataset.json are:

    • Index: Sequential ID.
    • Challenge: The mathematical question in LaTeX format, including assumptions regarding variables or other mathematical details.
    • Answer in Sympy: The answer to the question, represented as a SymPy expression string.
    • Variation: e.g., Equivalence-All-Hard, Numeric-One-3, etc.
    • Source: Same as the seed question from which this variation originated.

Customization

  • Seed_and_Max_Symbolic_Perturbations.csv: Modify this CSV to add new seed questions or adjust existing ones.
  • symnoise_char_list, symnoise_sym_list: Adjust the lists of symbolic characters and their SymPy representations if your questions use different symbols for perturbation (ASyMOB uses 'A', 'B', 'F', 'G', 'H' by default).
  • equivalent_forms_easy, equivalent_forms_hard: Add or modify the equivalent forms to introduce different types of mathematical equivalences.
  • noise_digits and reps_num: In generate_NA2S, you can change noise_digits to control the range of random numbers used for numeric perturbations and reps_num to control the number of repetitions for each item.

Citation

If you use ASyMOB in your research, please cite the paper:

@misc{ASyMOB,
      title={ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark}, 
      author={Michael Shalyt and Rotem Elimelech and Ido Kaminer},
      year={2025},
      eprint={2505.23851},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.23851}, 
}
Downloads last month
171