Datasets:
Index
stringlengths 1
5
| Challenge
stringlengths 41
1.55k
| Answer in Latex
stringclasses 122
values | Answer in Sympy
stringlengths 1
774
| Variation
stringclasses 31
values | Source
stringclasses 61
values |
---|---|---|---|---|---|
1 | Compute the first 5 nonzero terms (not necessarily a quadratic polynomial) of the Maclaurin series of $ f(x) = e^{\sin(x)} $ | 1+x+\frac{x^2}{2}-\frac{x^4}{8}-\frac{x^5}{15}+\cdots | -x**5/15 - x**4/8 + x**2/2 + x + 1 | Original | U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764 |
2 | Find the (infinite) power series of $f(x) \cdot g(x)$ for given $f(x) = \sum_{n=1}^\infty \left(n \cdot x^n\right)$ and $g(x) = \sum_{n=1}^\infty \left(n \cdot x^n\right)$ | \sum_{n=2}^\infty\left(\frac{1}{6}\cdot n\cdot\left(n^2-1\right)\cdot x^n\right) | Sum(n*x**n*(n**2 - 1), (n, 2, oo))/6 | Original | U-Math
sequences_series
fb6418ae-3440-4258-9388-89d799fd859a |
3 | Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = \sin(x) \cdot \cos\left(\frac{ \pi }{ 4 }\right) + \cos(x) \cdot \sin\left(\frac{ \pi }{ 4 }\right)$ | \frac{1}{34560\cdot\sqrt{2}}\cdot\left(288\cdot x^5+1440\cdot x^4-5760\cdot x^3-17280\cdot x^2+34560\cdot x+34560\right) | sqrt(2)*(x**5 + 5*x**4 - 20*x**3 - 60*x**2 + 120*x + 120)/240 | Original | U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921 |
4 | Compute the first 4 nonzero terms of the Maclaurin series of $f(x) = e^x \cdot \cos(x)$ | 1+x-\frac{x^3}{3}-\frac{x^4}{6} | -x**4/6 - x**3/3 + x + 1 | Original | U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1 |
5 | Compute $\lim_{x \to 0}\left(\frac{ 2 \cdot \cos(x)+4 }{ 5 \cdot x^3 \cdot \sin(x) }-\frac{ 6 }{ 5 \cdot x^4 }\right)$ | \frac{1}{150} | 1/150 | Original | U-Math
sequences_series
068e40ce-9108-4ef8-8ee5-0d1471ebbe43 |
6 | Evaluate $\lim_{x \to 0^{+}}\left(\left(\frac{ \tan\left(\frac{ x }{ 2 }\right) }{ \frac{ x }{ 2 } }\right)^{\frac{ 3 }{ x^2 }}\right)$ | $e^{\frac{1}{4}}$ | exp(1/4) | Original | U-Math
differential_calc
363dd580-f1fc-4867-a6ef-db2a03139745 |
7 | Evaluate
$ \lim_{x \to 5} \left( \frac{ 3 \cdot x }{ x-5 }-\frac{ 3 }{ \ln\left(\frac{ x }{ 5 }\right) } \right) $ | \frac{3}{2} | 3/2 | Original | U-Math
differential_calc
2d799998-115a-489b-a48b-57090954303e |
8 | Evaluate
$ \lim_{x \to \infty} \left(x - x^2 \cdot \ln\left(1 + \frac{ 1 }{ x }\right)\right) $ | \frac{1}{2} | 1/2 | Original | U-Math
differential_calc
efdc4110-cf56-4f37-bf54-40fdd5d58145 |
9 | Evaluate
$ \lim_{x \to 0^{+}} \left( \left( \frac{ \tan(2 \cdot x) }{ 2 \cdot x } \right)^{\frac{ 1 }{ 3 \cdot x^2 }} \right) $ | e^{\frac{4}{9}} | e**(4/9) | Original | U-Math
differential_calc
99a2304d-5d8e-4245-90da-a80651ca15d8 |
10 | Evaluate
$ \lim_{x \to 0}\left( \left| \frac{ -\sin(x) }{ x } \right| \right)^{\frac{ 1 }{ 4 \cdot x^2 }} $ | e^{\frac{-1}{24}} | e**(-1/24) | Original | U-Math
differential_calc
84c6a419-c103-41d5-aad5-dd8e690c6e88 |
11 | Integrate
$ \int \sin(x)^4 \cdot \cos(x)^6 dx $ | $C+\frac{1}{320}\cdot\left(\sin(2\cdot x)\right)^5+\frac{1}{128}\cdot\left(\frac{3\cdot x}{2}-\frac{\sin(4\cdot x)}{2}+\frac{\sin(8\cdot x)}{16}\right)$ | C + 3*x/256 + sin(2*x)**5/320 - sin(4*x)/256 + sin(8*x)/2048 | Original | U-Math
integral_calc
0c0ba3db-1470-4c36-975c-91ff5f51986f |
12 | Calculate the integral:
$
\int \frac{ \sqrt[5]{x}+\sqrt[5]{x^4}+x \cdot \sqrt[5]{x} }{ x \cdot \left(1+\sqrt[5]{x^2}\right) } dx
$ | C+5\cdot\arctan\left(\sqrt[5]{x}\right)+\frac{5}{4}\cdot\sqrt[5]{x}^4 | C + 5*x**(4/5)/4 + 5*atan(x**(1/5)) | Original | U-Math
integral_calc
126c4165-b3d5-4470-8412-08e79d9821cf |
13 | Solve the integral:
$
\int \frac{ 1 }{ \sin(x)^7 \cdot \cos(x) } dx
$ | C+\ln\left(\left|\tan(x)\right|\right)-\frac{3}{2\cdot\left(\tan(x)\right)^2}-\frac{3}{4\cdot\left(\tan(x)\right)^4}-\frac{1}{6\cdot\left(\tan(x)\right)^6} | C + log(Abs(tan(x))) - 3 / (2 * tan(x)**2) - 3 / (4 * tan(x)**4) - 1 / (6 * tan(x)**6) | Original | U-Math
integral_calc
00f6affb-905a-4109-a78e-2dde7a0b83accf |
14 | Compute the integral:
$
-2 \cdot \int x^{-4} \cdot \left(4+x^2\right)^{\frac{ 1 }{ 2 }} dx
$ | C+\frac{1}{6}\cdot\left(\frac{4}{x^2}+1\right)\cdot\sqrt{\frac{4}{x^2}+1} | (C*x**2 + sqrt((x**2 + 4)/x**2)*(x**2 + 4)/6)/x**2 | Original | U-Math
integral_calc
05ea9929-8cbb-432b-bbbb-ec1e74c9f401 |
15 | Solve the integral:
$
\int \left(\frac{ x+4 }{ x-4 } \right)^{\frac{ 3 }{ 2 }} dx
$ | C+\sqrt{\frac{x+4}{x-4}}\cdot(x-20)-12\cdot\ln\left(\left|\frac{\sqrt{x-4}-\sqrt{x+4}}{\sqrt{x-4}+\sqrt{x+4}}\right|\right) | C + sqrt((x + 4)/(x - 4)) * (x - 20) - 12 * ln(Abs((sqrt(x - 4) - sqrt(x + 4)) / (sqrt(x - 4) + sqrt(x + 4)))) | Original | U-Math
integral_calc
08c72d46-1abd-49e1-9c9c-ce509902be6e |
16 | Compute the integral: $ \int \frac{ -1 }{ x^2 \cdot \left(3+x^3\right)^{\frac{ 5 }{ 3 }} } dx $ | \frac{1}{9}\cdot\sqrt[3]{1+\frac{3}{x^3}}+\frac{1}{18\cdot\left(1+\frac{3}{x^3}\right)^{\frac{2}{3}}} | (x**3 + 2)/(6*x**3*(1 + 3/x**3)**(2/3)) | Original | U-Math
integral_calc
4c1292e1-d4b3-4acf-afaf-eaac62f2662d |
17 | Compute the integral:
$ \int \frac{ 4 \cdot x+\sqrt{4 \cdot x-5} }{ 5 \cdot \sqrt[4]{4 \cdot x-5}+\sqrt[4]{(4 \cdot x-5)^3} } dx $ | C+25\cdot\sqrt[4]{4\cdot x-5}+\frac{1}{5}\cdot\sqrt[4]{4\cdot x-5}^5-\frac{4}{3}\cdot\sqrt[4]{4\cdot x-5}^3-\frac{125}{\sqrt{5}}\cdot\arctan\left(\frac{1}{\sqrt{5}}\cdot\sqrt[4]{4\cdot x-5}\right) | C + (4*x - 5)**(5/4)/5 - 4*(4*x - 5)**(3/4)/3 + 25*(4*x - 5)**(1/4) - 25*sqrt(5)*atan(sqrt(5)*(4*x - 5)**(1/4)/5) | Original | U-Math
integral_calc
147944c5-b782-48c5-a664-d66deb92d9a7 |
18 | Solve the integral:
$
\int \frac{ 3 }{ \sin(2 \cdot x)^7 \cdot \cos(-2 \cdot x) } dx
$ | C+\frac{3}{2}\cdot\left(\ln\left(\left|\tan(2\cdot x)\right|\right)-\frac{3}{2\cdot\left(\tan(2\cdot x)\right)^2}-\frac{3}{4\cdot\left(\tan(2\cdot x)\right)^4}-\frac{1}{6\cdot\left(\tan(2\cdot x)\right)^6}\right) | C + (3/2) * (log(Abs(tan(2*x))) - 3/(2 * tan(2*x)**2) - 3/(4 * tan(2*x)**4) - 1/(6 * tan(2*x)**6)
) | Original | U-Math
integral_calc
1db212f0-2fac-410d-969d-fe3b5b55d076 |
19 | Solve the integral:
$
\int \frac{ 1 }{ \sin(8 \cdot x)^5 } dx
$ | C+\frac{1}{128}\cdot\left(2\cdot\left(\tan(4\cdot x)\right)^2+6\cdot\ln\left(\left|\tan(4\cdot x)\right|\right)+\frac{1}{4}\cdot\left(\tan(4\cdot x)\right)^4-\frac{2}{\left(\tan(4\cdot x)\right)^2}-\frac{1}{4\cdot\left(\tan(4\cdot x)\right)^4}\right) | C + Rational(1, 128) * (2 * tan(4 * x)**2 + 6 * log(Abs(tan(4 * x))) + Rational(1, 4) * tan(4 * x)**4 - 2 / tan(4 * x)**2 - 1 / (4 * tan(4 * x)**4)) | Original | U-Math
integral_calc
275f7ceb-f331-4a3f-96ec-346e6d81b32a |
20 | Evaluate the integral:
$
I = \int \left(x^3 + 3\right) \cdot \cos(2 \cdot x) dx
$ | \frac{1}{256}\cdot\left(384\cdot\sin(2\cdot x)+128\cdot x^3\cdot\sin(2\cdot x)+192\cdot x^2\cdot\cos(2\cdot x)-96\cdot\cos(2\cdot x)-256\cdot C-192\cdot x\cdot\sin(2\cdot x)\right) | -C + x**3*sin(2*x)/2 + 3*x**2*cos(2*x)/4 - 3*x*sin(2*x)/4 + 3*sin(2*x)/2 - 3*cos(2*x)/8 | Original | U-Math
integral_calc
47a11349-0386-4969-9263-d3cdfcc98cb9 |
21 | Use factoring to calculate the following limit.
$ \lim_{x \rightarrow K} \frac {{x}^4-K^4} {{x}^5-K^5} $ | \frac{4}{5 K} | 4/(5*K) | Original | UGMathBench
Calculus_-_single_variable_0016 |
22 | Find the limit. $ \lim_{x \to 0} \frac{1-\cos\!\left(10x\right)}{\cos^{2}\!\left(6x\right)-1}$ | \frac{-25}{18} | -25/18 | Original | UGMathBench
Calculus_-_single_variable_0022 |
23 | Evaluate the limit. $ \lim_{x\to 1} \dfrac{x^2+11x-12}{\ln x}=$ | 13 | 13 | Original | UGMathBench
Calculus_-_single_variable_0508 |
24 | Evaluate the limit below, given that $f(t)=\left(\frac{4^t+6^t}{4}\right)^{1/t}$. $\lim\limits_{t\to+\infty} f(t)$ | 6 | 6 | Original | UGMathBench
Calculus_-_single_variable_0512 |
25 | Calculate the integral. $\int_{2}^{\infty} 3x^{2}e^{-x^{3}} dx=$ | \frac{1}{e^{8}} | e**(-8) | Original | UGMathBench
Calculus_-_single_variable_0592 |
26 | Evaluate the indefinite integral. $\int \tan^{3}\!\left(x\right)\sec^{9}\!\left(x\right) dx$ | \frac{\sec^{11}{\left(x \right)}}{11} - \frac{\sec^{9}{\left(x \right)}}{9} | sec(x)**11/11 - sec(x)**9/9 | Original | UGMathBench
Calculus_-_single_variable_0604 |
27 | Evaluate the indefinite integral.
$\int 208 \cos^4(16x) dx$ | 78 x + \frac{13 \sin{\left(16 x \right)} \cos^{3}{\left(16 x \right)}}{4} + \frac{39 \sin{\left(16 x \right)} \cos{\left(16 x \right)}}{8} | 78*x + 13*sin(16*x)*cos(16*x)**3/4 + 39*sin(16*x)*cos(16*x)/8 | Original | UGMathBench
Calculus_-_single_variable_0606 |
28 | Evaluate the integral.
$ \int \frac{10x^2-48x-38}{x^3-5x^2-8x+48} dx $ | \frac{2 \left(\left(x - 4\right) \left(3 \log{\left(\left|{x - 4}\right| \right)} + 2 \log{\left(\left|{x + 3}\right| \right)}\right) + 5\right)}{x - 4} | 2*((x - 4)*(3*log(Abs(x - 4)) + 2*log(Abs(x + 3))) + 5)/(x - 4) | Original | UGMathBench
Calculus_-_single_variable_0612 |
29 | Evaluate the integral. $ \int e^{x}\sqrt{64-e^{2x}} \;dx$ $=$ | \frac{e^{x} \sqrt{64 - e^{2 x}}}{2} + 32 \operatorname{asin}{\left(\frac{e^{x}}{8} \right)} | e**x*sqrt(64 - e**(2*x))/2 + 32*asin(e**x/8) | Original | UGMathBench
Calculus_-_single_variable_0624 |
30 | Evaluate $\lim_{x \to 0} \frac{e^{-3x^3}-1+3x^3-\frac{9}{2}x^6}{12x^9}$ | \frac{-3}{8} | -3/8 | Original | UGMathBench
Calculus_-_single_variable_0939 |
31 | Solve the following first-order differential equation:
$
\frac{dy}{dx} + 2y = e^{-x}, \quad y(0) = 1.
$ | e^{-x} | e**(-x) | Original | MathOdyssey
Problem 340 from Differential Equations - College Math |
32 | Consider the differential equation $\frac{dy}{dx} = xy$. Find the value of $y(\sqrt{2})$ given that $y(0) = 2$. | 2e | 2*e | Original | MathOdyssey
Problem 339 from Differential Equations - College Math |
33 | Evaluate the following limit:
$
\lim_{n \to \infty} \left(\sqrt{n^2+2n-1}-\sqrt{n^2+3}\right).
$ | 1 | 1 | Original | MathOdyssey
Problem 315 from Calculus and Analysis - College Math |
34 | Evaluate $\lim\limits_{x\to 4}\frac{x-4}{\sqrt{x}-2}$. | 4 | 4 | Original | MathOdyssey
Problem 317 from Calculus and Analysis - College Math |
35 | Evaluate $\displaystyle{\int_0^4(2x-\sqrt{16-x^2})dx}$. | 16 - 4 \pi | 16 - 4*pi | Original | MathOdyssey
Problem 325 from Calculus and Analysis - College Math |
36 | Evaluate the series $\sum\limits_{n=1}^\infty\frac{1}{(n+1)(n+3)}$. | \frac{5}{12} | 5/12 | Original | MathOdyssey
Problem 326 from Calculus and Analysis - College Math |
37 | Evaluate the limit $\lim\limits_{x\to 0}\frac{(1+x)^{\frac{1}{x}}-e}{x}$. | -\frac{ e}{2} | -e/2 | Original | MathOdyssey
Problem 327 from Calculus and Analysis - College Math |
38 | Evaluate the series $\sum\limits_{n=0}^\infty \frac{1}{2n+1}\left(\frac12\right)^{2n+1}$. | \ln\sqrt{3} | log(3)/2 | Original | MathOdyssey
Problem 328 from Calculus and Analysis - College Math |
39 | Evaluate the limit $\lim\limits_{n\to\infty}\sum\limits_{k=0}^{n-1}\frac{1}{\sqrt{n^2-k^2}}$. | \frac{\pi}{2} | pi/2 | Original | MathOdyssey
Problem 329 from Calculus and Analysis - College Math |
40 | Evaluate the iterated integral $\displaystyle{\int_0^1dy\int_y^1(e^{-x^2}+e^x)dx}$. | \frac{3}{2}-\frac12 e^{-1} | (3*e - 1)/(2*e) | Original | MathOdyssey
Problem 336 from Calculus and Analysis - College Math |
41 | What is the integral of $ 2x - x^7atan(3) $ | x^2-\frac{1}{8} x^8 \tan ^{-1}(3) | -x**8*atan(3)/8 + x**2 | Original | GHOSTS
Symbolic Integration
Q97 |
42 | What is the integral of $ 1 + x + x^3*cosh(2) $ | \frac{1}{4} x^4 \cosh (2)+\frac{x^2}{2}+x | x**4*cosh(2)/4 + x**2/2 + x | Original | GHOSTS
Symbolic Integration
Q98 |
43 | What is the integral of $ 12 + 6cosh(x) $ | 12 x + 6 \sinh{\left(x \right)} | 12*x + 6*sinh(x) | Original | GHOSTS
Symbolic Integration
Q90 |
44 | What is the integral of 4x^7 + sin(1 + x) | \frac{x^8}{2} - \cos(1+x) | x**8/2 - cos(x + 1) | Original | GHOSTS
Symbolic Integration
Q14 |
45 | What is the integral of 2x + 2x^2 + x[(x + x*e^x)^-1] | \frac{2 x^3}{3}+x^2-2 \tanh ^{-1}\left(2 e^x+1\right) | 2*x**3/3 + x**2 + x - log(exp(x) + 1) | Original | GHOSTS
Symbolic Integration
Q7 |
46 | What is the integral of -x + cos[ln(sin(3))] * ln(3x) | -\frac{1}{2} x (x-2 \log (3 x) \cos (\log (\sin (3)))+2 \cos (\log (\sin (3)))) | -1*x*((x - 2*log(3*x, E)*cos(log(sin(3), E))) + 2*cos(log(sin(3), E)))/2 | Original | GHOSTS
Symbolic Integration
Q15 |
47 | What is the integral of 3x - 4*[cos(x+3)]*x^2 | \frac{3 x^2}{2}-4 \left(x^2-2\right) \sin (x+3)-8 x \cos (x+3) | -8*x*cos(x + 3) + ((3*x**2)/2 - 4*(x**2 - 2)*sin(x + 3)) | Original | GHOSTS
Symbolic Integration
Q18 |
48 | What is the integral of -3 + atan(x) + ln(tanh(3)) | x \arctan(x) - \frac{1}{2} \ln(1 + x^2) + x \ln(\tanh(3)) - 3x + C | x*atan(x) - 3*x + x*log(tanh(3)) - log(x**2 + 1)/2 | Original | GHOSTS
Symbolic Integration
Q20 |
49 | What is the integral of e^{x \left(x + 4\right)^{2}} \left(x + 4\right) \left(3 x + 4\right) | e^{x (x+4)^2} | e**(x*(x + 4)**2) | Original | GHOSTS
Symbolic Integration
Q22 |
50 | What is the integral of -e^{3x} * sin(e^{3x}) | \frac{1}{3} \cos \left(e^{3 x}\right) | cos(e**(3*x))/3 | Original | GHOSTS
Symbolic Integration
Q29 |
51 | If $\log _{2} x-2 \log _{2} y=2$, determine $y$, as a function of $x$ | \frac{1}{2} \sqrt{x} | sqrt(x)/2 | Original | OlympiadBench
oe_to_maths_en_comp
2498 |
52 | If $f(x)=2 x+1$ and $g(f(x))=4 x^{2}+1$, determine an expression for $g(x)$. | x^2-2 x+2 | x**2 - 2*x + 2 | Original | OlympicArena
Math_1381 |
53 | Solve the following integral $\int_0^{\frac{\pi}{2}} \frac{x \sin(2x)}{1 + \cos^2(2x)} dx$ | Pi^2 / 16 | Pi**2 / 16 | Original | OBMU 2019 - Q21 |
54 | Solve the following integral:
$\int_{1}^{2} \frac{e^x(x - 1)}{x(x + e^x)} dx$ | \ln\left( \frac{2 + e^2}{2 + 2e} \right) | log((e**2 + 2)/(2*e + 2), E) | Original | OBMU 2019 - Q18 |
55 | Solve the following integral:
$\int_{0}^{\pi} \log(\sin(x)) dx$ | -\pi \log (2) | -pi*log(2, E) | Original | OBMU 2019 - Q22 |
56 | Evaluate the following hypergeometric function. Return a closed-form symbolic answer.
$ {}_2F_1\left( \begin{array}{c} 1,1\ \\ 2 \end{array}; -1 \right) $ | \log (2) | log(2, E) | Original | ASyMOB
Hypergeometrics
Q1 |
57 | Evaluate the following hypergeometric function. Return a closed-form symbolic answer.
$ {}_2F_1\left( \begin{array}{c} 1,1 \\ 3 \end{array}; -2 \right) $ | \frac{3 \log (3)}{2}-1 | -1 + (3*log(3, E))/2 | Original | ASyMOB
Hypergeometrics
Q2 |
58 | Evaluate the following hypergeometric function. Return a closed-form symbolic answer.
$ {}_3F_2\left( \begin{array}{c} 1,1,1 \\ 2,2 \end{array}; -1 \right) $ | \frac{\pi ^2}{12} | pi**2/12 | Original | ASyMOB
Hypergeometrics
Q3 |
59 | Evaluate the following hypergeometric function. Return a closed-form symbolic answer.
$ {}_3F_2\left( \begin{array}{c} -1,-1,-1 \\ -1,-1 \end{array}; x \right) $ | 1-x | 1-x | Original | ASyMOB
Hypergeometrics
Q4 |
60 | Solve the following integral. Return a closed-form symbolic answer.
\int \frac{ 1 }{ 1 + x^3 } dx | -\frac{1}{6} \log \left(x^2-x+1\right)+\frac{1}{3} \log (x+1)+\frac{\tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)}{\sqrt{3}} | (log(x + 1, E)/3 - 1*log((x**2 - x) + 1, E)/6) + atan((2*x - 1)/(sqrt(3)))/(sqrt(3)) | Original | ASyMOB
Hypergeometrics
Q5 |
61 | Solve the following integral.
\int \frac{(4 + (4 - 1)x^1)x^{2-1}}{2(1 + x^1 + x^{4})\sqrt{1 + x^1}} dx | \tan ^{-1}\left(\frac{x^2}{\sqrt{x+1}}\right) | atan(x**2/sqrt(x + 1)) | Original | ASyMOB
Hypergeometrics
Q6 |
62 | Compute up to degree 5 ($x^5$) the terms of the Maclaurin series of $ f(x) = A e^{B \sin(x)} $, where A and B are symbolic constants. | \frac{1}{6} A \left(B^3-B\right) x^3+\frac{1}{2} A B^2 x^2+\frac{1}{120} A \left(B^5-10 B^3+B\right) x^5+\frac{1}{24} A
\left(B^4-4 B^2\right) x^4+A B x+A | A*B**2*x**2/2 + A*B*x + A + x**5*A*(B**5 - 10*B**3 + B)/120 + x**4*A*(B**4 - 4*B**2)/24 + x**3*A*(B**3 - B)/6 | Symbolic-2 | U-Math
sequences_series
1ccc052c-9604-4459-a752-98ebdf3e0764 |
63 | Find the (infinite) power series of $f(x) \cdot g(x)$ for given $f(x) = \sum_{n=1}^\infty \left(A n \cdot (F x)^n\right)$ and $g(x) = \sum_{n=1}^\infty \left(B n \cdot (F x)^n\right$ | \sum_{n=2}^\infty \frac{1}{6} A B n \left(n^2-1\right) F^n \cdot x^n | A*B*Sum(F**n*x**n*n*(n**2 - 1), (n, 2, oo))/6 | Symbolic-3 | U-Math
sequences_series
fb6418ae-3440-4258-9388-89d799fd859a |
64 | Compute the first 6 nonzero terms of the Maclaurin series of $f(x) = F \left(\sin(A x) \cdot \cos\left(\frac{ B \pi }{ 4 }\right) + \cos(A x) \cdot \sin\left(\frac{ B \pi }{ 4 }\right)\right)$ | \frac{1}{120} A^5 F x^5 \cos \left(\frac{\pi B}{4}\right)+\frac{1}{24} A^4 F x^4 \sin \left(\frac{\pi
B}{4}\right)-\frac{1}{6} A^3 F x^3 \cos \left(\frac{\pi B}{4}\right)-\frac{1}{2} A^2 F x^2 \sin \left(\frac{\pi
B}{4}\right)+A F x \cos \left(\frac{\pi B}{4}\right)+F \sin \left(\frac{\pi B}{4}\right) | F*(A**5*x**5*cos(B*pi/4) + 5*A**4*x**4*sin(B*pi/4) - 20*A**3*x**3*cos(B*pi/4) - 60*A**2*x**2*sin(B*pi/4) + 120*A*x*cos(B*pi/4) + 120*sin(B*pi/4))/120 | Symbolic-3 | U-Math
sequences_series
f89bd354-18c9-4f31-b91f-cf6421e24921 |
65 | Compute the terms up to order 4 ($x^4$) of the Maclaurin series of $f(x) = F e^{A x} \cdot \cos(B x)$ | F x^3 \left(\frac{A^3}{6}-\frac{A B^2}{2}\right)+\frac{1}{2} F x^2 \left(A^2-B^2\right)+F x^4 \left(\frac{A^4}{24}-\frac{A^2
B^2}{4}+\frac{B^4}{24}\right)+A F x+F | F*(4*A*x**3*(A**2 - 3*B**2) + 24*A*x + x**4*(A**4 - 6*A**2*B**2 + B**4) + 12*x**2*(A**2 - B**2) + 24)/24 | Symbolic-3 | U-Math
sequences_series
d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1 |
66 | Compute $\lim_{x \to 0}\frac{(2 \cos (F x)+4) \csc (F x)}{5 A (F x)^3}-\frac{6}{5 A (F x)^4}$ | \frac{1}{A 150} | 1/(150*A) | Symbolic-2 | U-Math
sequences_series
068e40ce-9108-4ef8-8ee5-0d1471ebbe43 |
67 | Evaluate
$ \lim_{x \to 0^+} A \left( \frac{ \tan\left( \frac{B x}{2} \right) }{ \frac{B x}{2} } \right)^{ \frac{F 3}{(B x)^2} } $ | $A /cdot e^{\frac{F}{4}}$ | A*e**(F/4) | Symbolic-3 | U-Math
differential_calc
363dd580-f1fc-4867-a6ef-db2a03139745 |
68 | Evaluate
$ \lim_{x \to A 5} \left( \frac{ 3 B x }{ x - 5 A }-\frac{ 3 B }{ \ln\left(\frac{ x }{ 5 A }\right) } \right)^{F} $
| \left( \frac{3B}{2} \right)^F | (3*B/2)**F | Symbolic-3 | U-Math
differential_calc
2d799998-115a-489b-a48b-57090954303e |
69 | Evaluate
$ \lim_{x \to \infty} \left(A x - A F x^2 \cdot \ln\left(1 + \frac{ 1 }{ F x }\right)\right)^(1 B) $
| \left(\frac{A}{2 F}\right)^{B} | (A/(2*F))**B | Symbolic-3 | U-Math
differential_calc
efdc4110-cf56-4f37-bf54-40fdd5d58145 |
70 | Evaluate
$ \lim_{x \to 0^+} F \left( \frac{\tan(A x)}{A x} \right)^{\frac{1 H}{3 B x^2}} $ | F e^{\frac{A^{2} H}{9 B}} | F*e**((A**2*H)/((9*B))) | Symbolic-4 | U-Math
differential_calc
99a2304d-5d8e-4245-90da-a80651ca15d8 |
71 | Evaluate
$ \lim_{x \to 0} \left| F \left( \frac{-\sin(A x)}{A x} \right)^{\frac{1}{4 B x^2}} \right| $ | \left( e^{-\frac{A^2}{6B}} \right)^{\frac{1}{4}} \left| F \right| | (exp(-A**2 / (6 * B)))**Rational(1, 4) * Abs(F) | Symbolic-3 | U-Math
differential_calc
84c6a419-c103-41d5-aad5-dd8e690c6e88 |
72 | Integrate
$ \int B \sin(F x)^4 \cdot \cos(F x)^6 dx $ | \frac{\frac{B \sin{\left(2 F x \right)}}{512} - \frac{B \sin{\left(4 F x \right)}}{256} - \frac{B \sin{\left(6 F x \right)}}{1024} + \frac{B \sin{\left(8 F x \right)}}{2048} + \frac{B \sin{\left(10 F x \right)}}{5120} + \frac{F x \left(256 A + 3 B\right)}{256}}{F} | (3*B*x)/256 + (B*sin(2*F*x))/(512*F) - (B*sin(4*F*x))/(256*F) - (B*sin(6*F*x))/(1024*F) + (B*sin(8*F*x))/(2048*F) + (B*sin(10*F*x))/(5120*F) | Symbolic-2 | U-Math
integral_calc
0c0ba3db-1470-4c36-975c-91ff5f51986f |
73 | Solve the following integral. Assume A,B,F,G are real and positive.
$ \int \frac{A \sqrt[5]{x} + B x^{4/5} + F x^{6/5}}{x \left(1 G+x^{2/5}\right)} dx $ | \frac{5}{4} \left(\frac{4 A \tan ^{-1}\left(\frac{\sqrt[5]{x}}{\sqrt{G}}\right)}{\sqrt{G}}+2 x^{2/5} (B-F G)+2 G (F G-B) \log
\left(G+x^{2/5}\right)+F x^{4/5}\right) | (5/4)*(F*x**(4/5) + ((2*(x**(2/5)*(B - F*G)) + (4*(A*atan(x**(1/5)/(sqrt(G)))))/(sqrt(G))) + 2*(G*(-B + F*G)*log(G + x**(2/5), E)))) | Symbolic-4 | U-Math
integral_calc
126c4165-b3d5-4470-8412-08e79d9821cf |
74 | Solve the following integral. Assume A,B,F are real and positive
$ \int \frac{A \csc ^7(F x) \sec (F x)}{1 B} dx $ | -\frac{A \left(2 \csc ^6(F x)+3 \csc ^4(F x)+6 \csc ^2(F x)+12 (\log (\cos (F x))-\log (\sin (F x)))\right)}{12 B F} | -A*(-12*log(sin(F*x)) + 12*log(cos(F*x)) + 2*csc(F*x)**6 + 3*csc(F*x)**4 + 6*csc(F*x)**2)/(12*B*F) | Symbolic-3 | U-Math
integral_calc
00f6affb-905a-4109-a78e-2dde7a0b83accf |
75 | Solve the following integral. Assume A,B,F are real and positive.
$ \int -\frac{2 A \sqrt{4 B + (F x)^2}}{ (F x)^4} dx $ | \frac{A \left(4 B+F^2 x^2\right)^{3/2}}{6 B F^4 x^3} | A*(4*B + F**2*x**2)**(3/2)/(6*B*F**4*x**3) | Symbolic-3 | U-Math
integral_calc
05ea9929-8cbb-432b-bbbb-ec1e74c9f401 |
76 | Solve the following integral. Assume A,B,F are real and positive.
$ \int \left(\frac{B (4 A + F x)}{F x - 4 A}\right)^{3/2} dx $ | \frac{B \sqrt{\frac{B (4 A+F x)}{F x-4 A}} \left(\sqrt{4 A+F x} (F x-20 A)+24 A \sqrt{F x-4 A} \tanh ^{-1}\left(\frac{\sqrt{4
A+F x}}{\sqrt{F x-4 A}}\right)\right)}{F \sqrt{4 A+F x}} | B*sqrt(-B*(4*A + F*x)/(4*A - F*x))*(24*A*sqrt(-4*A + F*x)*atanh(sqrt(4*A + F*x)/sqrt(-4*A + F*x)) + (-20*A + F*x)*sqrt(4*A + F*x))/(F*sqrt(4*A + F*x)) | Symbolic-3 | U-Math
integral_calc
08c72d46-1abd-49e1-9c9c-ce509902be6e |
77 | Solve the following integral. Assume A,B,F,G are real and positive.
$ \int \frac{ -1 A }{B (F x)^2 \cdot \left(3 G + (F x)^3\right)^{\frac{ 5 }{ 3 }} } dx $ | \frac{A \left(F^3 x^3+2 G\right)}{6 B F^2 G^2 x \left(F^3 x^3+3 G\right)^{2/3}} | A*(F**3*x**3 + 2*G)/(6*B*F**2*G**2*x*(F**3*x**3 + 3*G)**(2/3)) | Symbolic-4 | U-Math
integral_calc
4c1292e1-d4b3-4acf-afaf-eaac62f2662d |
78 | Solve the following integral. Assume A,B,F,G,H are real and positive.
$ \int \frac{\sqrt{4 A x-5 B}+4 F x}{5 G \sqrt[4]{4 A x - 5 B} + H (4 A x - 5 B)^{3/4}} dx $ | \frac{\frac{\sqrt{H} \left(20 A^2 H^2 x+375 F G^2 \sqrt{4 A x-5 B}+5 B H \left(12 F H \sqrt{4 A x-5 B}-5 A H+25 F G\right)+A H
\left(12 F H x \sqrt{4 A x-5 B}-75 G \sqrt{4 A x-5 B}-100 F G x\right)\right)}{\sqrt[4]{4 A x-5 B}}-75 \sqrt{5} \sqrt{G}
\left(-A G H+B F H^2+5 F G^2\right) \tan ^{-1}\left(\frac{\sqrt{H} \sqrt[4]{4 A x-5 B}}{\sqrt{5} \sqrt{G}}\right)}{15 A^2
H^{7/2}} | (75*sqrt(5)*sqrt(G)*(4*A*x - 5*B)**(1/4)*(A*G*H - B*F*H**2 - 5*F*G**2)*atan(sqrt(5)*sqrt(H)*(4*A*x - 5*B)**(1/4)/(5*sqrt(G))) + sqrt(H)*(20*A**2*H**2*x + A*H*(-100*F*G*x + 12*F*H*x*sqrt(4*A*x - 5*B) - 75*G*sqrt(4*A*x - 5*B)) + 5*B*H*(-5*A*H + 25*F*G + 12*F*H*sqrt(4*A*x - 5*B)) + 375*F*G**2*sqrt(4*A*x - 5*B)))/(15*A**2*H**(7/2)*(4*A*x - 5*B)**(1/4)) | Symbolic-5 | U-Math
integral_calc
147944c5-b782-48c5-a664-d66deb92d9a7 |
79 | Solve the following integral. Assume A,B,F are real and positive.
$ \int \frac{3 A \csc ^7(2 F x) \sec (2 F x)}{1 B} dx $ | -\frac{A \left(2 \csc ^6(2 F x)+3 \csc ^4(2 F x)+6 \csc ^2(2 F x)+12 (\log (\cos (2 F x))-\log (\sin (2 F x)))\right)}{8 B F} | -A*(-12*log(sin(2*F*x)) + 12*log(cos(2*F*x)) + 2*csc(2*F*x)**6 + 3*csc(2*F*x)**4 + 6*csc(2*F*x)**2)/(8*B*F) | Symbolic-3 | U-Math
integral_calc
1db212f0-2fac-410d-969d-fe3b5b55d076 |
80 | Solve the following integral. Assume A,F are real and positive.
$ \int A \csc^5 (8 F x) dx $ | -\frac{A \left(\csc ^4(4 F x)+6 \csc ^2(4 F x)-\sec ^4(4 F x)-6 \sec ^2(4 F x)+24 (\log (\cos (4 F x))-\log (\sin (4 F
x)))\right)}{512 F} | -A*(-24*log(sin(4*F*x)) + 24*log(cos(4*F*x)) + csc(4*F*x)**4 + 6*csc(4*F*x)**2 - sec(4*F*x)**4 - 6*sec(4*F*x)**2)/(512*F) | Symbolic-2 | U-Math
integral_calc
275f7ceb-f331-4a3f-96ec-346e6d81b32a |
81 | Solve the following integral. Assume A,B,F are real and positive.
$ \int \cos (2 F x) \left(A (F x)^3+3 B \right) dx $ | \frac{2 \sin (2 F x) \left(A F x \left(2 F^2 x^2-3\right)+6 B\right)+3 A \left(2 F^2 x^2-1\right) \cos (2 F x)}{8 F} | ((2*A*F*x*(2*F**2*x**2 - 3) + 12*B)*sin(2*F*x) + 3*A*(2*F**2*x**2 - 1)*cos(2*F*x))/(8*F) | Symbolic-3 | U-Math
integral_calc
47a11349-0386-4969-9263-d3cdfcc98cb9 |
82 | Use factoring to calculate the following limit.
Assume A,B,F are real and positive.
$ \lim_{x \rightarrow K} \frac{(F x)^{4 B} - K^{4 B}}{A \left((F x)^{5 B}- K^{5 B}\right)} $ | \frac{4 K^{-B}}{5 A} | 4/(5*A*K**B) | Symbolic-3 | UGMathBench
Calculus_-_single_variable_0016 |
83 | Calculate the following limit.
Assume A,B,F are real and positive.
$ \frac{1 B - B \cos (10 F x)}{A \cos ^2(6 F x) - 1 A} $ | -\frac{25 B}{18 A} | -25*B/(18*A) | Symbolic-3 | UGMathBench
Calculus_-_single_variable_0022 |
84 | Calculate the following limit.
Assume A,B,F are real and positive.
$ \frac{A (F x)^2+11 A F x - 12 A}{B \log (F x)} $ | \frac{13 A}{B} | 13*A/B | Symbolic-3 | UGMathBench
Calculus_-_single_variable_0508 |
85 | Calculate the following limit.
Assume A,F are real and A>1.
$ \lim\limits_{x\to+\infty} 4^{-\frac{1}{F x}} \left(\frac{(4 A)^{F x} + (6 A)^{F x} }{1 A}\right)^{\frac{1}{F x}} $ | 6 A | 6*A | Symbolic-2 | UGMathBench
Calculus_-_single_variable_0512 |
86 | Calculate the following integral.
Assume A,B, F are real and positive.
$\int_{2 B}^{\infty} 3 A (F x)^2 e^{- (F x)^3} dx=$ | \frac{A e^{-8 B^3 F^3}}{F} | A/(F*e**(8*B**3*F**3)) | Symbolic-3 | UGMathBench
Calculus_-_single_variable_0592 |
87 | Evaluate the indefinite integral.
Assume A, F are real and positive.
$\int A \tan ^3(F x) \sec ^9(F x) dx$ | \frac{A \sec ^9(F x) \left(9 \sec ^2(F x)-11\right)}{99 F} | A*(9*sec(F*x)**2 - 11)*sec(F*x)**9/(99*F) | Symbolic-2 | UGMathBench
Calculus_-_single_variable_0604 |
88 | Evaluate the indefinite integral.
Assume A, F are real and positive.
$\int 208 A \cos ^4(16 F x) dx$ | \frac{13 A (192 F x+8 \sin (32 F x)+\sin (64 F x))}{32 F} | 13*A*(192*F*x + 8*sin(32*F*x) + sin(64*F*x))/(32*F) | Symbolic-2 | UGMathBench
Calculus_-_single_variable_0606 |
89 | Evaluate the integral.
Assume A, B, F, G are real and positive.
$ \int \frac{-38 A+10 B (F x)^2-48 F G x}{(F x)^3-5 (F x)^2-8 F x+48} dx $ | \frac{2 \left(\frac{7 (19 A-80 B+96 G)}{F x-4}+(19 A+200 B-72 G) \log (4-F x)+(-19 A+45 B+72 G) \log (F x+3)\right)}{49 F} | 2*(133*A - 560*B + 672*G + (F*x - 4)*((-19*A + 45*B + 72*G)*log(F*x + 3) + (19*A + 200*B - 72*G)*log(-F*x + 4)))/(49*F*(F*x - 4)) | Symbolic-4 | UGMathBench
Calculus_-_single_variable_0612 |
90 | Evaluate the integral.
Assume A,B,F are real and positive.
$ \int A e^{F x} \sqrt{64 B-e^{2 F x}} \;dx$ | \frac{A \left(e^{F x} \sqrt{64 B-e^{2 F x}}+64 B \tan ^{-1}\left(\frac{e^{F x}}{\sqrt{64 B-e^{2 F x}}}\right)\right)}{2 F} | A*(64*B*atan(e**(F*x)/sqrt(64*B - e**(2*F*x))) + e**(F*x)*sqrt(64*B - e**(2*F*x)))/(2*F) | Symbolic-3 | UGMathBench
Calculus_-_single_variable_0624 |
91 | Evaluate the following limit.
Assume A,B,F are real and positive.
$\lim_{x \to 0} \frac{-\frac{9}{2} (1 B)^2 (F x)^6+3 B F^3 x^3+e^{-3 B (F x)^3}-1}{12 A (F x)^9} $ | -\frac{3 B^3}{8 A} | -3*B**3/(8*A) | Symbolic-3 | UGMathBench
Calculus_-_single_variable_0939 |
92 | Solve the following first-order differential equation:
Assume A,B,F,G are real and positive.
$ A y'(x)+2 B y(x)=F e^{-x}, \quad y(0)=1 G.$ | \frac {e^{-\frac{2 B x}{A}} \left(F \left(-e^{x \left(\frac{2 B}{A}-1\right)}\right)+A G-2 B
G+F\right)}{A-2 B} | (A*G - 2*B*G + F + F*(-e**x*((-A + 2*B)/A)))/(e**(2*B*x/A)*(A - 2*B)) | Symbolic-4 | MathOdyssey
Problem 340 from Differential Equations - College Math |
93 | Consider the differential equation
$A y'(x)=B x y(x)$.
Find the value of $y(\sqrt{2})$ given that $y(0) = 2 F$.
Assume A,B,F are real and positive. | 2 F e^{\frac{B}{A}} | 2*F*e**(B/A) | Symbolic-3 | MathOdyssey
Problem 339 from Differential Equations - College Math |
94 | Evaluate the following limit:
$ \lim_{x \to \infty} \sqrt{-(1 B) + H (F x)^2 + 2 F G x}-\sqrt{3 A + H (F x)^2} .$
Assume A,B,F,G,H are real and positive. | \frac{G}{\sqrt{H}} | G/sqrt(H) | Symbolic-5 | MathOdyssey
Problem 315 from Calculus and Analysis - College Math |
95 | Evaluate $\lim\limits_{x\to \frac{4 B}{1 F}} \frac{A (F x - 4 B)}{\sqrt{F x}-2 \sqrt{1 B}} $.
Assume A,B,F are real and positive. | 4 A \sqrt{B} | 4*A*sqrt(B) | Symbolic-3 | MathOdyssey
Problem 317 from Calculus and Analysis - College Math |
96 | Evaluate $\int_0^(4 B) (2 A x - \sqrt{(4 B F)^2 - (F x)^2}) dx$.
Assume A,B,F are real and positive. | \frac{1}{4} B^2 (4 A-\pi F) | B**2*(A - F*pi/4) | Symbolic-3 | MathOdyssey
Problem 325 from Calculus and Analysis - College Math |
97 | Evaluate the series $\sum\limits_{x=1}^\infty \frac{1 A}{B (1 F + x) (1 F+x+2)} $.
Assume A,B,F are real and positive. | \frac{A (2 F+3)}{2 B (F+1) (F+2)} | A*(2*F + 3)/(2*(F + 2)*B*(F + 1)) | Symbolic-3 | MathOdyssey
Problem 326 from Calculus and Analysis - College Math |
98 | Evaluate the limit $\lim\limits_{x \to 0} \frac{(A x+1)^{\frac{1}{A x}}-e}{B x} $.
Assume A,B are real and positive. | -\frac{e A}{2 B} | -A*e/(2*B) | Symbolic-2 | MathOdyssey
Problem 327 from Calculus and Analysis - College Math |
99 | Evaluate the series $\sum\limits_{n=0}^\infty \frac{ \left(\frac{1}{2 B}\right)^{A (2 n+1)}}{F (2 n+1)} $.
Assume A,B,F are real and positive. | \frac{\tanh ^{-1}\left(2^{-A} \left(\frac{1}{B}\right)^A\right)}{F} | atanh((1/(2*B))**A)/F | Symbolic-3 | MathOdyssey
Problem 328 from Calculus and Analysis - College Math |
100 | Evaluate the limit
$\lim\limits_{n\to\infty}\sum\limits_{k=0}^{n-1}\frac{1 A}{B \sqrt{F n^2-k^2}}$
Assume A,B, $F \ge 1$ are real and positive. | \frac{A}{B} \arcsin\left(\frac{1}{\sqrt{F}}\right) | A*asin(1/sqrt(F))/B | Symbolic-3 | MathOdyssey
Problem 329 from Calculus and Analysis - College Math |
ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark
This dataset is associated with the paper "ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark".
Abstract
Large language models (LLMs) are rapidly approaching the level of proficiency in university-level symbolic mathematics required for applications in advanced science and technology. However, existing benchmarks fall short in assessing the core skills of LLMs in symbolic mathematics—such as integration, limits, differential equations, and algebraic simplification.
To address this gap, we introduce ASyMOB (pronounced Asimov, in tribute to the renowned author), a novel assessment framework focused exclusively on symbolic manipulation, featuring 17,092 unique math challenges, organized by similarity and complexity. ASyMOB enables analysis of LLM failure root-causes and generalization capabilities by comparing performance in problems that differ by simple numerical or symbolic "perturbations".
Evaluated LLMs exhibit substantial degradation in performance for all perturbation types (up to -70.3%), suggesting reliance on memorized patterns rather than deeper understanding of symbolic math, even among models achieving high baseline accuracy. Comparing LLM performance to computer algebra systems (CAS, e.g. SymPy), we identify examples where CAS fail while LLMs succeed, as well as problems solved only when combining both approaches. Models capable of integrated code execution yielded higher accuracy compared to their performance without code, particularly stabilizing weaker models (up to +33.1% for certain perturbation types).
Notably, the most advanced models (o4-mini, Gemini 2.5 Flash) demonstrate not only high symbolic math proficiency (scoring 96.8% and 97.6% on the unperturbed set), but also remarkable robustness against perturbations, (-21.7% and -21.2% vs. average -50.4% for the other models). This may indicate a recent "phase transition" in the generalization capabilities of frontier LLMs. It remains to be seen whether the path forward lies in deeper integration with more sophisticated external tools, or in developing models so capable that symbolic math systems like CAS become unnecessary.
ASyMOB Dataset Generation
See the ASyMOB code repository for the data generation code and seed CSV.
ASyMOB_Generation.py generates a diverse set of mathematical question variants from a seed CSV file. It leverages the SymPy
library for symbolic mathematics to create various perturbations of original questions, including symbolic, numeric, and equivalence-based transformations. The generated questions are then saved to a JSON file.
Usage
Prepare your seed data: Ensure you have a CSV file named
Seed_and_Max_Symbolic_Perturbations.csv
in the same directory as the script. This CSV should contain the seed mathematical questions, their maximal symbolic perturbations, and answers as SymPy expressions.The expected fields in
Seed_and_Max_Symbolic_Perturbations.csv
are:Challenge
: The mathematical question in LaTeX format, including assumptions regarding variables or other mathematical details.Answer in LaTeX
(optional): The answer to the question, represented as a LaTeX string.Answer in Sympy
: The answer to the question, represented as a SymPy expression string.Variation
: "Original" or "Symbolic".Source
: Identifies the origin of the question.
Run the script:
python ASyMOB_Generation.py
Output: The script will generate a JSON file named
Full_ASyMOB_Dataset.json
in the same directory. This file will contain all the original seed and symbolic questions along with their newly generated symbolic, numeric, and equivalence-based variants.The fields in
Full_ASyMOB_Dataset.json
are:Index
: Sequential ID.Challenge
: The mathematical question in LaTeX format, including assumptions regarding variables or other mathematical details.Answer in Sympy
: The answer to the question, represented as a SymPy expression string.Variation
: e.g., Equivalence-All-Hard, Numeric-One-3, etc.Source
: Same as the seed question from which this variation originated.
Customization
Seed_and_Max_Symbolic_Perturbations.csv
: Modify this CSV to add new seed questions or adjust existing ones.symnoise_char_list
,symnoise_sym_list
: Adjust the lists of symbolic characters and their SymPy representations if your questions use different symbols for perturbation (ASyMOB uses 'A', 'B', 'F', 'G', 'H' by default).equivalent_forms_easy
,equivalent_forms_hard
: Add or modify the equivalent forms to introduce different types of mathematical equivalences.noise_digits
andreps_num
: Ingenerate_NA2S
, you can changenoise_digits
to control the range of random numbers used for numeric perturbations andreps_num
to control the number of repetitions for each item.
Citation
If you use ASyMOB in your research, please cite the paper:
@misc{ASyMOB,
title={ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark},
author={Michael Shalyt and Rotem Elimelech and Ido Kaminer},
year={2025},
eprint={2505.23851},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.23851},
}
- Downloads last month
- 171