Datasets:

Modalities:
Image
ArXiv:
Libraries:
Datasets
File size: 3,814 Bytes
1cbc724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deea060
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
<p align="center">
  <img width="700" height="400" src="images/LogoITD.png">
</p>

## Description
Introduction of new dataset for unsupervised fabric defect detection 
This dataset aims to provide a color dataset with real industrial fabric defect gathered in a visiting machine with several industrial cameras.
It has been designed with the same nomenclature as MVTEC AD dataset (https://www.mvtec.com/company/research/datasets/mvtec-ad) for unsupervised anomaly detection. 

<p align="center">
  <img width="700" height="250" src="images/Samples.png">
</p>

<div align="center"> 
  
| Type        | Total      | Train(Good) | Test(Good) | Test(Defective)  | Sample | 
| :------:|:-----:|:-----:| :------:|:-----:|-----|
| type1cam1  	| 386 	| 272 	| 28 	| 86 	| <img src="images/type1cam1.png" alt="" width="150"> |
| type2cam2  	| 257 	| 199 	| 19 	| 39 	| <img src="images/type2cam2.png" alt="" width="150">|
| type3cam1  	| 689 	| 588 	| 54 	| 47 	| <img src="images/type3cam1.png" alt="" width="150">|
| type4cam2  	| 229 	| 199 	| 19 	| 11 	| <img src="images/type4cam2.png" alt="" width="150">|
| type5cam2  	| 298 	| 199 	| 19 	| 80 	| <img src="images/type5cam2.png" alt="" width="150">|
| type6cam2  	| 291 	| 199 	| 19 	| 73 	| <img src="images/type6cam2.png" alt="" width="150">|
| type7cam2  	| 917 	| 711 	| 89 	| 117 	| <img src="images/type7cam2.png" alt="" width="150">|
| type8cam1  	| 868 	| 711 	| 89 	| 68 	| <img src="images/type8cam1.png" alt="" width="150">|
| type9cam2 	| 856 	| 721 	| 86 	| 49 	| <img src="images/type9cam2.png" alt="" width="150">|
| type10cam2 	| 871 	| 717 	| 90 	| 64 	| <img src="images/type10cam2.png" alt="" width="150">|

</div>

## Download 

The dataset can be downloaded in google drive with this link : [LINK](https://drive.google.com/drive/folders/1orrMLs0FH4KgEm0vIsneeX3qsvILMh6L?usp=sharing) 



## Utilisation
This dataset is designed for unsupervised anomaly detection task but can also be used for domain-generalization approach.
The nomenclature is designed as : 
<p align="center">
  <img width="550" height="350" src="images/Nomenclature2.png">
</p>

- category/
  - train/
    - good/
      - img1.png
      - ...
  - test/
    - anomaly/
      - img1.png
      - ...
    - good/
      - img1.png
      - ...

As in any unsupervised training, train data are defect-free. Defective samples are only in the test set.

## Exemples

Exemple of defect segmentation obtained with our knowledge distillation-based method
<p align="center">
  <img width="700" height="250" src="images/DefectITDB.png">
</p>


## Documentation

List of articles related to the subject of textile defect detection

- **MixedTeacher : Knowledge Distillation for fast inference textural anomaly detection** (https://arxiv.org/abs/2306.09859)
- **FABLE : Fabric Anomaly Detection Automation Process** (https://arxiv.org/abs/2306.10089)
- **Exploring Dual Model Knowledge Distillation for Anomaly Detection** (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4493018)
- **Distillation-based fabric anomaly detection** (https://journals.sagepub.com/doi/abs/10.1177/00405175231206820)(https://arxiv.org/abs/2401.02287)
## Auteurs

- Simon Thomine <sup>1</sup>, PhD student - [@SimonThomine](https://github.com/SimonThomine) - [email protected]
- Hichem Snoussi <sup>1</sup>, Full Professor

<sup>1</sup> University of Technology of Troyes, France

## Citation
If you use this dataset, please cite
```
@inproceedings{Thomine_2023_Knowledge,
    author    = {Thomine, Simon and Snoussi, Hichem},
    title     = {Distillation-based fabric anomaly detection},
    booktitle = {Textile Research Journal},
    month     = {August},
    year      = {2023}
}
```

## Licence


This project is under the MIT license [MIT](https://opensource.org/licenses/MIT).
---
license: mit
---