File size: 2,563 Bytes
7aefd38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b9b042
 
 
 
aa9d082
6b9b042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
dataset_info:
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 250000
  - name: speaker
    dtype: string
  - name: subset
    dtype: string
  - name: index
    dtype: int64
  - name: label
    dtype: string
  - name: original_name
    dtype: string
  splits:
  - name: train
    num_bytes: 12703856316.896
    num_examples: 99024
  download_size: 8163587149
  dataset_size: 12703856316.896
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---
# Dataset Card for VocSim - Mouse Identity Classification

## Dataset Description

This dataset is used in the **VocSim benchmark** paper for evaluating the ability of neural audio embeddings to identify individual mice based on their ultrasonic vocalization (USV) syllables. It contains pre-segmented USV syllables from multiple individual mice, derived from recordings created by **Van Segbroeck et al. (2017)**.

The primary task associated with this dataset is supervised classification: training a model to predict the correct mouse identity (`speaker` field) given an audio input (a single syllable) or its derived features.

**Included Files:**
*   Hugging Face `Dataset` object containing audio file paths (individual syllables) and metadata (mouse identity).

## Dataset Structure

### Data Instances

A typical example in the dataset looks like this:

```python
{
  'audio': {'path': '/path/to/datasets/mouse_identity/BM003/BM003_syllable_1.wav', 'array': array([...], dtype=float32), 'sampling_rate': 250000},
  'subset': 'mouse_identity',
  'index': 50,
  'speaker': 'BM003', # The crucial individual mouse ID (target label)
  'label': 'BM003_syllable_1', # Syllable-specific identifier
  'original_name': 'BM003/BM003_syllable_1.wav' # Example original relative path
}
```
### Citation Information

If you use this dataset, please cite the VocSim benchmark paper, and the MUPET software if relying on the provided segmentation:
```
@unpublished{vocsim2025,
  title={VocSim: Zero-Shot Audio Similarity Benchmark for Neural Embeddings},
  author={Anonymous},
  year={2025},
  note={Submitted manuscript}
}

@article{VanSegbroeck2017,
    author = {Van Segbroeck, Maarten and Knoll, Aaron T. and Levitt, Patricia and Narayanan, Shrikanth},
    title = "{MUPET}-Mouse Ultrasonic Profile ExTraction: A Signal Processing Tool for Rapid and Unsupervised Analysis of Ultrasonic Vocalizations",
    journal = {Neuron},
    volume = {94},
    number = {3},
    pages = {465--485.e5},
    year = {2017},
    doi = {10.1016/j.neuron.2017.04.018}
}
```