File size: 12,404 Bytes
dc30617 3a16f40 dc30617 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and Simon Ott, github: nomisto
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MedMentions is a new manually annotated resource for the recognition of biomedical concepts.
What distinguishes MedMentions from other annotated biomedical corpora is its size (over 4,000
abstracts and over 350,000 linked mentions), as well as the size of the concept ontology (over
3 million concepts from UMLS 2017) and its broad coverage of biomedical disciplines.
Corpus: The MedMentions corpus consists of 4,392 papers (Titles and Abstracts) randomly selected
from among papers released on PubMed in 2016, that were in the biomedical field, published in
the English language, and had both a Title and an Abstract.
Annotators: We recruited a team of professional annotators with rich experience in biomedical
content curation to exhaustively annotate all UMLS® (2017AA full version) entity mentions in
these papers.
Annotation quality: We did not collect stringent IAA (Inter-annotator agreement) data. To gain
insight on the annotation quality of MedMentions, we randomly selected eight papers from the
annotated corpus, containing a total of 469 concepts. Two biologists ('Reviewer') who did not
participate in the annotation task then each reviewed four papers. The agreement between
Reviewers and Annotators, an estimate of the Precision of the annotations, was 97.3%.
For more information visit: https://github.com/chanzuckerberg/MedMentions
"""
import itertools as it
from typing import List
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@misc{mohan2019medmentions,
title={MedMentions: A Large Biomedical Corpus Annotated with UMLS Concepts},
author={Sunil Mohan and Donghui Li},
year={2019},
eprint={1902.09476},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DATASETNAME = "medmentions"
_DISPLAYNAME = "MedMentions"
_DESCRIPTION = """\
MedMentions is a new manually annotated resource for the recognition of biomedical concepts.
What distinguishes MedMentions from other annotated biomedical corpora is its size (over 4,000
abstracts and over 350,000 linked mentions), as well as the size of the concept ontology (over
3 million concepts from UMLS 2017) and its broad coverage of biomedical disciplines.
Corpus: The MedMentions corpus consists of 4,392 papers (Titles and Abstracts) randomly selected
from among papers released on PubMed in 2016, that were in the biomedical field, published in
the English language, and had both a Title and an Abstract.
Annotators: We recruited a team of professional annotators with rich experience in biomedical
content curation to exhaustively annotate all UMLS® (2017AA full version) entity mentions in
these papers.
Annotation quality: We did not collect stringent IAA (Inter-annotator agreement) data. To gain
insight on the annotation quality of MedMentions, we randomly selected eight papers from the
annotated corpus, containing a total of 469 concepts. Two biologists ('Reviewer') who did not
participate in the annotation task then each reviewed four papers. The agreement between
Reviewers and Annotators, an estimate of the Precision of the annotations, was 97.3%.
"""
_HOMEPAGE = "https://github.com/chanzuckerberg/MedMentions"
_LICENSE = 'Creative Commons Zero v1.0 Universal'
_URLS = {
"medmentions_full": [
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator.txt.gz",
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_trng.txt",
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_dev.txt",
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_test.txt",
],
"medmentions_st21pv": [
"https://github.com/chanzuckerberg/MedMentions/raw/master/st21pv/data/corpus_pubtator.txt.gz",
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_trng.txt",
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_dev.txt",
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_test.txt",
],
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class MedMentionsDataset(datasets.GeneratorBasedBuilder):
"""MedMentions dataset for named-entity disambiguation (NED)"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="medmentions_full_source",
version=SOURCE_VERSION,
description="MedMentions Full source schema",
schema="source",
subset_id="medmentions_full",
),
BigBioConfig(
name="medmentions_full_bigbio_kb",
version=BIGBIO_VERSION,
description="MedMentions Full BigBio schema",
schema="bigbio_kb",
subset_id="medmentions_full",
),
BigBioConfig(
name="medmentions_st21pv_source",
version=SOURCE_VERSION,
description="MedMentions ST21pv source schema",
schema="source",
subset_id="medmentions_st21pv",
),
BigBioConfig(
name="medmentions_st21pv_bigbio_kb",
version=BIGBIO_VERSION,
description="MedMentions ST21pv BigBio schema",
schema="bigbio_kb",
subset_id="medmentions_st21pv",
),
]
DEFAULT_CONFIG_NAME = "medmentions_full_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"pmid": datasets.Value("string"),
"passages": [
{
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
}
],
"entities": [
{
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
"concept_id": datasets.Value("string"),
"semantic_type_id": datasets.Sequence(
datasets.Value("string")
),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
urls = _URLS[self.config.subset_id]
(
corpus_path,
pmids_train,
pmids_dev,
pmids_test,
) = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"corpus_path": corpus_path, "pmids_path": pmids_train},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"corpus_path": corpus_path, "pmids_path": pmids_test},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"corpus_path": corpus_path, "pmids_path": pmids_dev},
),
]
def _generate_examples(self, corpus_path, pmids_path):
with open(pmids_path, encoding="utf8") as infile:
pmids = infile.readlines()
pmids = {int(x.strip()) for x in pmids}
if self.config.schema == "source":
with open(corpus_path, encoding="utf8") as corpus:
for document in self._generate_parsed_documents(corpus, pmids):
yield document["pmid"], document
elif self.config.schema == "bigbio_kb":
uid = it.count(0)
with open(corpus_path, encoding="utf8") as corpus:
for document in self._generate_parsed_documents(corpus, pmids):
document["id"] = next(uid)
document["document_id"] = document.pop("pmid")
entities_ = []
for entity in document["entities"]:
for type in entity["semantic_type_id"]:
entities_.append(
{
"id": next(uid),
"type": type,
"text": entity["text"],
"offsets": entity["offsets"],
"normalized": [
{
"db_name": "UMLS",
"db_id": entity["concept_id"].split(":")[-1],
}
],
}
)
document["entities"] = entities_
for passage in document["passages"]:
passage["id"] = next(uid)
document["relations"] = []
document["events"] = []
document["coreferences"] = []
yield document["document_id"], document
def _generate_parsed_documents(self, fstream, pmids):
for raw_document in self._generate_raw_documents(fstream):
if self._parse_pmid(raw_document) in pmids:
yield self._parse_document(raw_document)
def _generate_raw_documents(self, fstream):
raw_document = []
for line in fstream:
if line.strip():
raw_document.append(line.strip())
elif raw_document:
yield raw_document
raw_document = []
# needed for last document
if raw_document:
yield raw_document
def _parse_pmid(self, raw_document):
pmid, _ = raw_document[0].split("|", 1)
return int(pmid)
def _parse_document(self, raw_document):
pmid, type, title = raw_document[0].split("|", 2)
pmid_, type, abstract = raw_document[1].split("|", 2)
passages = [
{"type": "title", "text": [title], "offsets": [[0, len(title)]]},
{
"type": "abstract",
"text": [abstract],
"offsets": [[len(title) + 1, len(title) + len(abstract) + 1]],
},
]
entities = []
for line in raw_document[2:]:
(
pmid_,
start_idx,
end_idx,
mention,
semantic_type_id,
entity_id,
) = line.split("\t")
entity = {
"offsets": [[int(start_idx), int(end_idx)]],
"text": [mention],
"semantic_type_id": semantic_type_id.split(","),
"concept_id": entity_id,
}
entities.append(entity)
return {"pmid": int(pmid), "entities": entities, "passages": passages}
|